• Title/Summary/Keyword: Crack Tip

Search Result 757, Processing Time 0.021 seconds

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements (음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구)

  • Ong, J.W.;Moon, S.I.;Jeong, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1993
  • Fracture behavior of pre-cracked compact tension specimens made of AISI 4130 steel was investigated using acoustic emission (AE) and ultrasonic C-scan measurements. While each specimen was loaded up to a certain level, various acoustic emission parameters were recorded together with the crack opening displacement (COD). An elastic-plastic finite element analysis was performed to calculate COD and the damage (plastic) zone size ahead of crack tip. Ultrasonic C-scans, in a pulse-echo, immersion mode, were done for mapping the damage zone size. The agreement between the finite element results and the measured COD was satisfactory. Based on AE results, the test specimens were found to show ductile behavior. The slope of the total ringdown counts vs. COD curve was useful to determine the crack initiation. The preliminary C-scan images showed evidence of changes in the amplitude of ultrasonic signal in the damaged region, and the shape and size of the damage zone matched qualitatively with the finite element results. A further work on the damage zone sizing was also pointed out.

  • PDF

Review of Factors Affecting IASCC Initiation of Stainless Steel in PWRs (원자로 내부구조물 균열개시 민감도에 미치는 영향인자 고찰)

  • Hwang, Seong Sik;Choi, Min Jae;Kim, Sung Woo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.210-229
    • /
    • 2021
  • To safely operate domestic nuclear power plants approaching the end of their design life, the material degradation management strategy of the components is important. Among studies conducted to improve the soundness of nuclear reactor components, research methods for understanding the degradation of reactor internals and preparing management strategies were surveyed. Since the IGSCC (Intergranular Stress Corrosion Cracking) initiation and propagation process is associated with metal dissolution at the crack tip, crack initiation sensitivity was decreased in the hydrogenated water with decreased crack sensitivity but occurrence of small surface cracks increased. A stress of 50 to 55% of the yield strength of the irradiated materials was required to cause IASCC (Irradiation Assisted Stress Corrosion Cracking) failure at the end of the reactor operating life. In the threshold-stress analysis, IASCC cracks were not expected to occur until the end of life at a stress of less than 62% of the investigated yield strength, and the IASCC critical dose was determined to be 4 dpa (Displacement Per Atom). The stainless steel surface oxide was composed of an internal Cr-rich spinel oxide and an external Fe and Ni-rich oxide, regardless of the dose and applied strain level.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

Development of the Fixed Slab Analogy Device for the Measurement of Stress Intensity Factor (응력확대계수 측정용 고정 슬랩상사 장치의 개발)

  • 정진석;최선호;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.1999-2010
    • /
    • 1992
  • The fixed slab analogy device which can measure stress intensity factors(S.I.F) experimentally by slab analogy theory is developed in this paper. The margin of errors resulted from the new testing apparatus are between 0.02% and 8.25%. Therefore, it is assured that this one can be effectively used for the more accurate measurement of S.I.F.( $k_{I}$, $k_{I I}$) than conventional apparatus. The pitch of master grating used in this experiment is 0.1mm It is known that the ratio of the distance from crack tip to the crack length on obtaining the accurate stress intensity factor is between 0.4 and 0.7. The optimum curvature radius of slab is about 125mm. The thickness of slab(plate) used in the fixed slab analogy device is 0.05mm(P.V.C. ; E = 64 MN/ $m^{2}$, .nu.=0.38), which is proved to be suitable for the test. The optimum material for the frame(slab`s external boundary) is a alloy tool steel(SKS 5) plate and its thickness is 1mm. In this research, the rigid cracks are directly bonded to the slab surface by cyanoacrylate adhesive for the easiness of slab making and conformity to the practical crack figure. The material of rigid crack is thin steel plate. It is expected that the developed method can be used effectively for the analysis of $k_{I}$ and $k_{I I}$ of arbitrary shaped or distributed cracks.cks.

Viscoelastic Analysis of Osmotic Blistering Behavior of Coating Film

  • Lee, Sang Soon;Park, Myung Kyu
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • The osmotic blistering behavior of polymeric coating film which is in contact with an aqueous environment has been investigated. In this study, the coating film has been assumed to be linearly viscoelastic. Interfacial stresses induced in a laminate model consisting of the viscoelastic film and the elastic substrate as the film absorbs moisture from the ambient environment have been investigated using the time-domain boundary element method. The overall stress intensity factor for interfacial cracks subjected to a uniform osmotic pressure has been computed using the tractions at the crack tip node. The magnitude of stress intensity factors decreases with time due to viscoelastic relaxation, but remains constant at large times.

Evaluation of Fracture Toughness and Microstructure on FCA Weldment According to Heat Input (입열량에 따른 FCAW용접부 파괴인성에 미치는 미세조직의 영향)

  • Shin, Yong-Taek;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • This paper is to evaluate fracture characteristics of API 2W Gr.50 TMCP steel weldment typically applied for offshore structures, with the focus on the influence of heat input arising from flux cored arc welding. Based on the results and insights developed from this study, it is found that the toughness for both CTOD and impact exhibits a tendency to decrease as the weld heat input increases. The reheated zone of weldmetal exhibit lower hardness than solidified zone and microstructure that are liable to affect the toughness are acicular ferrite and martensite-austenite constituents (M-A). In particular, M-A is a more effective micro-phase for CTOD toughness than impact toughness.

Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral (시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.

Advanced Finite Element Technology for Fracture Mechanics Analysis of Cracked Shells (균열된 쉘의 파괴역학해석을 위한 선진유한요소기법)

  • 우광성
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 1991
  • A new finite element technology based on the p-version of E.F.M. is discussed with reference to its potential for application to stress intensity factor computations in linear elastic fracture mechanics, especially cracked cylindrical shells. It is shown that the p-version model is far better suited for computing the stress intensity factors than the conventional h-version models with the help of three test problems. The main advantage of this technology is that the accuracy of approximation can be established without mesh refinement or the use of special procedures such as crack-tip element and mixed variational approach.

  • PDF