• Title/Summary/Keyword: Crack Orientation

Search Result 154, Processing Time 0.022 seconds

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.

P Wave Velocity Anisotropy and Microcracks of the Pochon Granite Due to Cyclic Loadings (압축피로에 의한 포천화강암의 미세균열 발달과 P파속도 이방성)

  • Kim, Yeonghwa;Jang, Bo-An;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 1997
  • P wave velocities of core samples from the Pocheon granite were measured before and after applications of cyclic loading. Then. distribution of the pre-existing microcracks and microcracks developed due to the cyclic loading was investigated by analyzing P wave velocity anisotropies and microscopic observations from thin sections. Anisotropy constants were calculated with three different ways: (1) $C_A$ between the maximum and the minimum velocities, (2) $C_AI$ between velocities measured along the axial direction and the average of six velocities measured in the planes perpendicular to the loading axis (rift plane) and (3) $C_AII$ between the maximum and the minimum velocities measured in the plane perpendicular to the loading axis. Among anisotropy constants. $C_AI$ was the most effective anisotropy constant to identify the rift plane whose orientation is parallel to the pre-existing microcracks as well as the distribution of stress induced microcracks. $C_AI$ decreased after cyclic loading and the relationship between $C_AI$ and number of cycles shows comparatively coherent negative trends. indicating that stress induced microcracks are aligned perpendicular to the orientation of pre-existing microcracks and that the amounts are proportional to the number of loading cycles. The difference of anisotropy constants before and after cyclic loading was effective in delineating the level of cracks and we called it Induced Crack Index. Velocity measurements and microscopic observations show that anisotropy was caused mainly due to microcracks aligned to a particular direction.

  • PDF

Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test (음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • Damage Profess of CFRP laminates under monotonic tensile test was characterized by the correlation between Acoustic Emission(AE) and Ultrasonic Test(UT). The amplitude distribution of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pullout and fiber fracture as load is increased. In addtion, the characteristics of ultrasonic amplitude attenuation are useful lot analysis of the different type of fracture mechanism. Different orientation of carbon fiber reinforced plastic specimens were used to investigate the AE amplitude range and ultrasonic amplitude attenuation. Finally, loading-unloading tests were carried out to check Felicity effect. During the tests, ultrasonic amplitude attenuation was investigated at the same time and compared with AE parameters. The result showed that two parameters of both AE and UT could be effectively used for analysis of fracture mechanism in CFRP laminates.

  • PDF

Effect of the processing variables on the formation of $Pb(Sc_{1/2}Nb_{1/2})O_3$ thin layers ($Pb(Sc_{1/2}Nb_{1/2})O_3$ 박막 형성에 미치는 공정변수의 영향)

  • Park, Kyung-Bong;Kwon, Seung-Hyeop;Kim, Tae-Huei
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.70-74
    • /
    • 2009
  • Effect of the processing variables on the formation of $Pb(Sc_{1/2}Nb_{1/2})O_3$(hereafter PSN) thin layers prepared on Pt(111)/Ti/$SiO_2$/Si substrates using the sol-gel and the spin coating method has been studied. After each deposition, the coated films were heated at $370^{\circ}C$ for 5 min. Then they were finally sintered at temperature range of $600{\sim}700^{\circ}C$ by RTA(rapid thermal annealing). The final multilayered films showed a (111) preferred orientation. On a while, the layer-by-layer crystallization of multilayered amorphous thin films without the intermediate heating exhibited a (100) preferred orientation. In case of heat treatment in the tube furnace with the heating rate of $4^{\circ}C/min$, (100) and (111) oriented thin layers were formed simultaneously. The microstructure of the deposited films were dense and crack-free with thickness of 300nm, irrespective of the processing variables.

A study on YBCO superconductor Prepared by Melted Texture Growth with Ag (Ag 첨가 용융조직성장 YBCO 초전도체의 연구)

  • ;;;Fan Zhangguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.234-238
    • /
    • 1995
  • In this parer, by means of adding nonsuperconductive phase sliver into YBCO matrix, the superconductivity of Melted Texture Growth (MTG) YBa$_2$Cu$_3$O$\_$7-x/ was improved remarkably. In order to eliminate the crack inthe YBCO and the weak linkin the grain boundary, Ag contents from 2wt% to 18Wt% were doped in the YBCO It was found that J$\_$c/ of YBCO increase with the increasing Ag content till 14 wt% over 14wt% of Ag content, the Jc tends to stable . The grain size of YBCO became fine when Ag was added in the YBCO and X-ray diffraction showed that the YBCO crystal prepared by the above technique had (001) orientation and growing plane of YBCO was a-b plane. Using Bens medel, the J$\_$c/ was calculated and the best result was J$\_$c/ 76000A$\textrm{cm}^2$(77K, 100Gs).

  • PDF

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

Crystal Plasticity Simulation of Ti-6Al-4V Under Fretting Fatigue (프레팅 피로를 받는 Ti-6Al-4V의 결정소성 시뮬레이션)

  • Goh Chung Hyun;Lee Kee Seok;Ko Jun Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.511-517
    • /
    • 2005
  • Fretting fatigue is often the root cause of the nucleation of cracks at attachments of structural components. Since fretting fatigue damage accumulation occurs over relatively small volumes, the subsurface cyclic plastic strain is expected to be rather non-uniformly distributed in polycrystalline materials. The scale of the cyclic plasticity and the damage process zones is often on the order of microstructure dimensions. Fretting damage analyses using cyclic crystal plasticity constitutive models have the potential to account for the influence of size, morphology, and crystallographic orientation of grains on fretting damage evolution. Two-dimensional plane strain simulations of fretting fatigue are performed using the cyclic properties of Ti-6Al-4V. The crystal plasticity simulations are compared to an initially isotropic $J_{2}$ theory with nonlinear kinematic hardening as well as to experiments. The influence of initially isotropic versus textured microstructure in the presence of crystallographic slip is studied.

Direct Tensile Behavior of Steel.Fiber Reinforced Concrete (강섬유콘크리트의 직접인장 거동 특성)

  • 이신호;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.124-131
    • /
    • 1987
  • The aims of this study was to determine the mechanical properties of steel-fiber reinforced concrete under direct tensile loading, and also to insestigate the mechanism fiber reinforcement in order to improve the possible applications of steel-fiber reinforced concrete. In this study the major variables of experimental investigation were fiber conntents, and the lengths and diameters of fibers. The major results obtained are summarized as follows : 1. The strength, elastic modulus and energy absorption capability of steel-fiber reinforced concrete under direct tensile loading were improved as increasing of fiber contents. 2. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the lengths of fiber, but was decreased as increasing of fiber diameters. 3. The direct tensile strength of steel-fiber reinforced concrete was not influenced by the fiber aspect-ratio, but this was because the fiber contents were below the critical value of fiber content. 4. The correlation of direct tensile strength and combined parameter, Vf l/d, was not good. 5. Mutiple cracking and post-crack resistance were investigated at stress-strain curves in direct tensile test. 6. The effect of fiber reinforcement can be influenced by fiber orientation and the bond strength between fiber and matrix. 7. The improvement of mechanical properties of steel-fiber reinforced concrete under direct tensile loading can be theoretically explained by the concept of composite materials.

  • PDF

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.