• 제목/요약/키워드: Crack Nucleation

검색결과 44건 처리시간 0.026초

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review

  • Nejati, Hamid Reza;Nazerigivi, Amin;Imani, Mehrdad;Karrech, Ali
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.15-27
    • /
    • 2020
  • During the past decades, the application of acoustic emission techniques (AET) through the diagnosis and monitoring of the fracture process in materials has been attracting considerable attention. AET proved to be operative among the other non-destructive testing methods for various reasons including their practicality and cost-effectiveness. Concrete and rock structures often demand thorough and real-time assessment to predict and prevent their damage nucleation and evolution. This paper presents an overview of the work carried out on the use of AE as a monitoring technique to form a comprehensive insight into its potential application in brittle materials. Reported properties in this study are crack growth behavior, localization, damage evolution, dynamic character and structures monitoring. This literature review provides practicing engineers and researchers with the main AE procedures to follow when examining the possibility of failure in civil/resource structures that rely on brittle materials.

MLS 가스겔용 NBR 피복 SUS301 박판의 피로파손 (Fatigue Fracture of NBR-coated SUS301 Thin Plate for MLS Gasket)

  • 한병기;조성산;장훈;김범근
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.207-212
    • /
    • 2004
  • Full-beads of multi-layer steel engine head gaskets that are used to seal the combustion gas between the head and the block are subject to cyclic bending stresses due to the variation of the head/block gap during engine operation. The S-N curve for the fatigue durability assessment of the full-bead formed on NBR-coated SUS301 thin plate is deduced from the axial fatigue test results because of the difficulty in conducting the bending fatigue test of thin plate. The experimental verification of the deduced S-N curve is presented. It is shown that the NBR coating increases the endurance limit of the plate significantly. Mechanism of crack nucleation and propagation in the full-bead is discussed with photographs of the fatigue cracks.

계면손상과 미세균열을 고려한 입자강화 복합재료의 미세역학 탄성구성모델 (A Micromechanics based Elastic Constitutive Model for Particle-Reinforced Composites Containing Weakened Interfaces and Microcracks)

  • 이행기;표석훈;김형기
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.51-58
    • /
    • 2008
  • 본 연구에서는 입자강화 복합재료(particle-reinforced composites)의 거동을 예측하기 위하여 Lee and Pyo(2007)에 의해 제안된 계면손상을 고려한 복합재료의 미세역학 탄성모델과 Karihaloo and Fu(1989)의 미세균열 생성모델을 결합하여, 보강입자의 계면손상(imperfect interface)과 기지 내 미세균열을 고려하여 탄성구성모델(constitutive model)의 거동해석을 수행하였다. 제안된 탄성구성모델의 적용성 검증과 주요손상변수가 거동예측에 미치는 영향을 알아보기 위해 일축 하중 하에서의 응력-변형률 관계를 수치적으로 나타내었다. 또한, 기존의 관련 실험결과와 본 해석결과와의 비교를 통하여 제안된 모델의 정확도를 검증하였다.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

전자빔 증착법으로 이축배향된 Ni-3%W 기판 위에 높은 증착률로 제조된 $CeO_2$ 완충층에 대한 연구 (A study on $CeO_2$ buffer layer on biaxially textured Ni-3%W substrate deposited by electron beam evaporation with high deposition rate)

  • 김혜진;이종범;김병주;홍석관;이현준;권병국;이희균;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-5
    • /
    • 2011
  • [ $CeO_2$ ]has been widely used for single buffer layer of coated conductor because of superior chemical and structural compatibility with $ReBa_2Cu_3O_{7-{\delta}}$(Re=Y, Nd, Sm, Gd, Dy, Ho, etc.). But, the surface of $CeO_2$ layer showed cracks because of the large difference in thermal expansion coefficient between metal substrate and deposited $CeO_2$ layer, when thickness of $CeO_2$ layer exceeds 100 nm on the biaxially textured Ni-3%W substrate. The deposition rate has been limited to be less than 6 $\AA$/sec in order to get a good epitaxy. In this research, we deposited $CeO_2$ single buffer layers on biaxially textured Ni-3%W substrate with 2-step process such as thin nucleation layer(>10 nm) with low deposition rate(3 $\AA$/sec) and thick homo epitaxial layer(>240 nm) with high deposition rate(30 $\AA$/sec). Effect of deposition temperature on degree of texture development was tested. Thick homo epitaxial $CeO_2$ layer with good texture without crack was obtained at $600^{\circ}C$, which has ${\Delta}{\phi}$ value of $6.2^{\circ}$, ${\Delta}{\omega}$ value of $4.3^{\circ}$ and average surface roughness(Ra) of 7.2 nm within $10{\mu}m{\times}10{\mu}m$ area. This result shows the possibility of preparing advanced Ni substrate with simplified architecture of single $CeO_2$ layer for low cost coated conductor.

석탄 바닥재-${Na_2}O-{Li_2O}$계 결정화 유리의 미세구조 분석 (Microstructural analysis of coal bottom ash-${Na_2}O-{Li_2O}$ system glass-ceramics)

  • 강승구
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2009
  • 화력발전소로부터 발생된 석탄 바닥재(coal bottom ash)에 융제로 $Na_{2}O$$Li_{2}O$를, 핵 형성제로 $TiO_2$를 첨가하여 결정화유리를 제조한 뒤 그 미세구조를 분석하였다. 시편내 주결정상은 nepheline이었고, $TiO_2$가 첨가됨에 따라 nepheline 결정상 분율이 증가되었다. $TiO_2$가 첨가되지 않은 시편은 표면 결정화 기구에 수지(dendrite) 형태의 결정상이 성장되었으며, 내부 모상에는 결정이 거의 생성되지 않았다. 그러나 $TiO_2$ 첨가량이 4% 이상으로 증가되면, 표면결정화 기구는 억제되어 표면결정층의 두께가 얇아졌고 내부 모상은 결정질로 전이되었으며 동시에 $1{\mu}m$ 이하 크기의 미립자도 함께 생성되었다. 특히 6%의 $TiO_2$가 첨가된 결정화유리 내부에는 길이가 $5{\mu}m$인 수지상 결정들이 서로 얽혀진 형태를 보였으며, 이러한 미세구조는 외부로부터 하중을 가해졌을 때 발생되는 균열의 전파를 효과적으로 억제할 수 있을 것으로 예상된다.

AC4A 알루미늄 합금의 인장 및 응고균열 특성에 미치는 스크랩 첨가 비율의 영향 (Effect of Scrap Addition Ratio on Tensile and Solidification Cracking Properties of AC4A Aluminum Casting Alloy)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제40권3호
    • /
    • pp.85-96
    • /
    • 2020
  • The effect of an aluminum scrap addition ratio on the tensile and solidification cracking properties of the AC4A aluminum alloy in the as-cast state and heat-treated state were investigated in this study. Generally, the expected problem of using scrap in aluminum casting is an increase of hydrogen and Fe element inside the aluminum melt. Another issue is an oxide film which has a weak interface with the molten aluminum and acts as potent nucleation sites for internal porosity and crack initiation. Solidification cracking is one of the critical defects that must be resolved to produce high quality castings. A conventional evaluation method for solidification cracking is a relative and qualitative analysis method which does not provide quantitative data on the thermal stress in the solidification process. Therefore, a newly designed solidification cracking test apparatus was used in this study, and the device can provide quantitative data. As a result, after conducting experiments with different scrap addition ratios (0%, 20%, 35%, 50%), the tensile strengths and elongations in the as-cast state were 214, 187.7, 182.1 and 170.4MPa and 4.6%, 3.4%, 3.1% and 2.3%, respectively. In the case of the T6 heat-treated state, the tensile strengths and elongations were 314.9, 294.6, 293.1 and 271.1MPa and 5.4%, 4.6%, 3.8% and 3.1%, respectively. The strength of the solidification cracking was 3.1, 2.4, 2.2and 1.6MPa as the scrap addition ratio increases.

피로한도 이하에서 발생하는 압입축의 접촉손상 특성 (Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit)

  • 이동형;권석진;함영삼;유원희
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.