• 제목/요약/키워드: CrN film

검색결과 143건 처리시간 0.025초

TAB 테이프 제조를 위한 구리 도금 및 에칭에 관한 연구 (Cu Electroplating on Patterned Substrate and Etching Properties of Cu-Cr Film for Manufacturing TAB Tape)

  • 김남석;강탁;윤일표;박용수
    • 한국표면공학회지
    • /
    • 제27권3호
    • /
    • pp.158-165
    • /
    • 1994
  • Cu-Cr alloy thin film requires good quality of etching be used for TAB technology. The etched cross sec-tion was clean enough when the etching was performed in 0.1M $FeCl_3$ solution at $50^{\circ}C$. The etching rate was increased with the amount of $KMnO_4$. For enhanced profile of cross section and rate, the spray etchning was found to be superior compared to the immersion etching. A series of experiments were performed to improve the uniformity of the current distribution in electrodeposition onto the substrate with lithographic patterns. Copper was electrodeposited from quiescent-solution, paddle-agitated-solution, and air-bubbled-solution to in-vestigate the effect of the fluid flow. The thickness profile of the specimen measured by profilmetry has the non uniformity at feature scale in quiescent-solution, because of the longitudinal vortex roll caused by the natural convection. However, uniform thickness profile was achieved in paddle-agitated or air bubbled solu-tion.

  • PDF

Characterization of Tribocorrosion Behaviour of CoCr Alloy by Electrochemical Techniques in Several Corrosive Media

  • Escudero, M.L.;Diaz, I.;Martinez Lerma, J.F.;Montoya, R.;Garcia-Alonso, M.C.
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.68-73
    • /
    • 2018
  • Substitution of hip and knee joints by CoCr alloys is in great demand due to their high wear resistance and good biocompatibility. Understanding of tribocorrosion in joint replacements requires study of variables such as coefficient of friction and the choice of a proper corrosive medium in wear-corrosion tests carried out in the lab. The objective of this study was to characterize tribocorrosion behaviour of CoCr alloy with low (LCCoCr) and high carbon (HCCoCr) contents in several corrosive media: NaCl, Phosphate Buffer Solution (PBS), and PBS with hyaluronic acid (PBS-HA). Tribocorrosion tests were carried out on a pin-on-disk tribometer with an integrated electrochemical cell. A normal load of 5N was applied on the alumina ball counterpart at a rotation rate of 120 rpm. Coefficient of friction (COF) was measured and tribocorrosion behaviour was characterized by in situ application of electrochemical techniques. HCCoCr alloy immersed in PBS-HA showed the best tribocorrosion behaviour with the lowest COF. In this case, in situ measurement of corrosion potential and the impedance data under wear corrosion process showed an active state while passive film was continuously destroyed without possibility of regeneration.

a-Si:H TFT의 수율 향상을 위한 공정 개선 (The Improvement of Fabrication Process for a-Si:H TFT's Yield)

  • 허창우
    • 한국정보통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.1099-1103
    • /
    • 2007
  • 본 연구는 기존의 방식으로 만든 비정질 실리콘 박막 트랜지스터의 제조공정에서 발생되는 결함에 대한 원인을 분석하고 해결함으로써 수율을 증대시키고 신뢰성을 개선하고자한다. 본 연구의 수소화 된 비정질 실리콘 박막 트랜지스터는 Inverted Staggered 형태로 게이트 전극이 하부에 있다. 실험 방법은 게이트전극, 절연층, 전도층, 에치스토퍼 및 포토레지스터층을 연속 증착한다. 스토퍼층을 게이트 전극의 패턴으로 남기고, 그 위에 n+a-Si:H층 및 NPR(Negative Photo Resister)을 형성시킨다. 상부 게이트 전극과 반대의 패턴으로 NPR층을 패터닝 하여 그것을 마스크로 상부 n+a-Si:H 층을 식각하고, 남아있는 NPR층을 제거한다. 그 위에 Cr층을 증착한 후 패터닝하여 소오스-드레인 전극을 위한 Cr층을 형성시켜 박막 트랜지스터를 제조한다. 이렇게 제조한 박막 트랜지스터에서 생기는 문제는 주로 광식각공정시 PR의 잔존이나 세척시 얇은 화학막이 표면에 남거나 생겨서 발생되며, 이는 소자를 파괴시키는 주된 원인이 된다. 그러므로 이를 개선하기 위하여 ashing이나 세척공정을 보다 엄격하게 수행하였다. 이와 같이 공정에 보다 엄격한 기준의 세척과 여분의 처리 공정을 가하여 수율을 확실히 개선 할 수 있었다.

Alloy42 기판 위에 증착된 Ag막의 밀착력에 관한 연구 (A study on the adhesion of Ag film deposited on Alloy42 substrate)

  • 이철룡;천희곤;조동율;이건환;권식철
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.496-502
    • /
    • 1999
  • Electroplating of Ag and Au on the functional area of lead frames are required for good bonding ability in IC packaging. As the patterns of the lead frame become finer, development of new deposition technology has been required for solving problems associated with process control for uniform thickness on selected area. Sputtering was employed to investigate the adhesion between substrate Alloy42 and Ag film as a new candidate process alternative to conventional electroplating. Coating thickness of Ag film was controlled to 3.5$\mu\textrm{m}$ at room temperature as a reference. The deposition of film was optimized to ensure the adhesion by process parameters of substrate heating temperature at $100~300^{\circ}C$, sputter etching time at -300V for 10~30min, bias voltage of -100~-500V, and existence of Cr interlayer film of $500\AA$. The critical $load L_{c}$ /, defined as the minimum load at which initial damage occurs, was the highest up to 29N at bias voltage of -500V by scratch test. AFM surface image and AES depth profile were investigated to analyze the interface. The effect of bias voltage in sputtering was to improve the surface roughness and remove the oxide on Alloy42.

  • PDF

RF 스퍼터링과 이온소스 복합방식에 의한 플라스틱사출금형(SKD11)의 DLC막 응용 (The Application of DLC(diamond-like carbon) Film for Plastic Injection Mold by Hybrid Method of RF Sputtering and Ion Source)

  • 김미선;홍성필
    • 한국표면공학회지
    • /
    • 제42권4호
    • /
    • pp.173-178
    • /
    • 2009
  • DLC film was synthesized on plastic injection mold(SKD11, $30\;mm\;{\times}\;19\;mm\;{\times}\;0.5\;mm$) and Si(100) wafer for 2 h at $130^{\circ}C$ under 6 mTorr using hybrid method of rf sputtering and ion source. The obtained film was analysed by Raman spectroscopy, AFM, TEM, Nano indenter and scratch tester, etc. The film was defined as an amorphous phase. In the Raman spectrum, broad peak of $sp^2$-bonded carbon attributed to graphite at $1550\;cm^{-1}$ were observed, and the ratio of ID($sp^3$ diamond intensity)/IG($sp^2$ graphite intensity) was approximately 0.54. The adhesion of DLC film was more than 80 N with scratch tester when $0.2\;{\mu}m$ thickness Cr was coated as interlayer. The micro-hardness was distributed at 35~37 GPa. The friction coefficient was 0.02~0.07, and surface roughness(Ra) was 0.34~1.64 nm. The lifetime of DLC coated plastic injection mold using as a connector part in computer was more than 2 times of non-coated mold.

유기박막트랜지스터의 표면처리 효과 (Surface treatment effects on organic thin film transistors)

  • 임상철;김성현;김미경;정태형;이정헌;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.126-126
    • /
    • 2003
  • 유기트랜지스터에 관한 연구는 1980년 이후부터 시작되었으나 근래에 들어 전 세계적으로 본격적인 연구가 진행되고 있다. 제작공정이 간단하고 비용이 저렴하며 충격에 의해 깨지지 않고 구부리거나 접을 수 있는 전자 회로 기판이 미래의 산업에 필수적인 요소가 될 것으로 예상되고 있으며 이러한 요구를 충족시킬 수 있는 유기트랜지스터의 개발은 아주 중요한 연구분야로 대두되고 있다. 본 연구에서는 표면처리에 따른 contact angle, I-V 특성곡선, 표면 morphology 등의 결과로부터 dry cleaning 한 것이 wet cleaning한 것보다 왜 좋은지를 논하고자 한다. 먼저 N-type SiO$_2$ 기판을 이용하여 back면의 oxide층을 제거한 후, back gate용으로 사용하기 위하여 sputtering장치로 Au/Cr을 증차하였다. 그리고 기판에 앞면을 photolithography 공정을 이용하여 Au/Cr를 1000$\AA$ 증착 하여 source-, drain-eldctrode를 제조하였다. 그리고 SiO$_2$ 기판의 표면처리를 달리하여 그 위에 유기박막을 증착하여 특성을 비교하였다.

  • PDF

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권3호
    • /
    • pp.130-133
    • /
    • 2010
  • A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향 (Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel)

  • 김혜진;전순혁;김순태;이인성;박용수
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

화학적 부동태 처리에 따른 듀플렉스 스테인리스 강의 피막 특성에 관한 연구 (Study on Passive Layer Characteristics of Chemically Passivated Duplex Stainless Steel)

  • 장휘운;이정훈;김용환;정원섭
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.219-225
    • /
    • 2012
  • The aim of the present study was to investigate the corrosion resistance and characteristics of passive layer between naturally passivated and chemically passivated duplex stainless steel, UNS S31803 (EN 1.4462) using CPT, XPS, and EIS. The treatment of $HNO_3$(II) and $HNO_3$(III) in ASTM A 967 was applied. In case of chemically passivated specimen, CPT of $HNO_3$(II) and $HNO_3$(III) were higher than that of naturally passivated specimen. In addition, from XPS results, the protectiveness index (Cr/(Fe+Cr)) of chemically passivated specimens was also higher than that of naturally passivated specimen. The reason for this result is considered due to post-cleaning treatment in chemical passivation process, that is, immersion in $Na_2Cr_3O_7$ solution. The fact that $HNO_3$(II) passivation treatment showed the highest film resistance and 'n', which is exponent related with constant phase element (CPE) of passivation film, was in good agreement with results of CPS and XPS. The chemical passivation treatment was an effective method to improve corrosion resistance of duplex stainless steel.

MCM-D 기판 내장형 수동소자 제조공정 (Fabrication process of embedded passive components in MCM-D)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • 마이크로전자및패키징학회지
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 1999
  • MCM-D 기판에 수동소자를 내장시키는 공정을 개발하였다. MCM-D 기판은 Cu/감광성 BCB를 각각 금속배선 및 절연막 재료로 사용하였고, 금속배선은 Ti/cu를 각각 1000$\AA$/3000$\AA$으로 스퍼터한 후 fountain 방식으로 전기 도금하여 3 um Cu를 형성하였으며, BCB 층에 신뢰성있는 비아형성을 위하여 BCB의 공정특성과 $C_2F_6$를 사용한 플라즈마 cleaning영향을 AES로 분석하였다. 이 실험에서 제작한 MCM-D 기판은 절연막과 금속배선 층이 각각 5개, 4개 층으로 구성되는데 저항은 2번째 절연막 위에 thermal evaporator 방식으로 NiCr을 600$\AA$증착하여 시트저항이 21 $\Omega$/sq가 되게 형성하였고. 인덕터는 coplanar 구조로 3, 4번째 금속배선층에 형성하였으며, 커패시터는 절연막으로 PECVD $Si_3N_4$를 900$\AA$증착한 후 1, 2번째 금속배선층에 형성하여 88nF/$\textrm {cm}^2$의 커패시턴스를 얻었다. 이 공정은 PECVD $Si_3N_4$와 thermal evaporation NiCr 공정을 이용함으로써 기존의 반도체 공정을 이용하여 MCM-D 기판에 수동소자를 안정적으로 내장시킬 수 있었다.

  • PDF