• 제목/요약/키워드: CrAlSiN hard coatings

검색결과 3건 처리시간 0.018초

ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구 (Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings)

  • 만지흠;이우재;장경수;최현진;권세훈
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향 (Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings)

  • 최선아;김형순;김성원;;김형태;오윤석
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.