DOI QR코드

DOI QR Code

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings

ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구

  • Wan, Zhixin (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Woo-Jae (School of Materials Science and Engineering, Pusan National University) ;
  • Jang, Kyung Su (Nano Convergence Team, Seo Yeong Co. Ltd.) ;
  • Choi, Hyun-Jin (MEMS/NANO Component Production Center, Busan Techno Park) ;
  • Kwon, Se Hun (School of Materials Science and Engineering, Pusan National University)
  • 만지흠 (부산대학교, 재료공학부) ;
  • 이우재 (부산대학교, 재료공학부) ;
  • 장경수 ((주)서영, 나노융합사업팀) ;
  • 최현진 (부산테크노파크, 멤스나노부품생산센터) ;
  • 권세훈 (부산대학교, 재료공학부)
  • Received : 2017.08.17
  • Accepted : 2017.10.30
  • Published : 2017.10.31

Abstract

Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Keywords

References

  1. S. Ulrich, H. Holleck, J. Ye, H. Leiste, R. Loos, M. Stuber, P. Pesch, S. Sattel, Influence of low energy ion implantation on mechanical properties of magnetron sputtered metastable (Cr,Al)N thin films, Thin Sol. Films 437 (2003) 164-169. https://doi.org/10.1016/S0040-6090(03)00595-9
  2. J. H. Park, W. S. Chung, Y. R. Cho, K. H. Kim, Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques, Surf. Coat. Technol 188 (2004) 425-430.
  3. E. Martinez, R. Sanjines, A. Karimi, J. Esteve, F. Levy, Mechanical properties of nanocomposite and multilayered Cr-Si-N sputtered thin films, Suf. Coat. Technol 180 (2004) 570-574.
  4. D. Y. Wang, Y. W. Li, W. Y. Ho, Deposition of high quality (Ti,Al)N hard coatings by vacuum arc evaporation process, Surf. Coat. Technol 114 (1999) 109-113. https://doi.org/10.1016/S0257-8972(99)00020-1
  5. S. Balasubramanian, A. Ramadoss, A. Kobayashi, J. Muthirulandi, Nanocomposite Ti-Si-N coatings deposited by reactive dc magnetron sputtering for biomedical applications, J. Am. Ceram. Soc 95 (2012) 2746-2752. https://doi.org/10.1111/j.1551-2916.2011.05029.x
  6. M. S. Kang, T. G. Wang, J. H. Shin, R. Nowak, K. H. Kim, Synthesis and properties of Cr-Al-Si-N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering, Trans. Nonferrous Met. Soc. China 22 (2012) s729-s734. https://doi.org/10.1016/S1003-6326(12)61795-6
  7. M. Chen, W. Chen, F. Cai, S Zhang, Q. M. Wang, Structural evolution and electrochemical behaviors of multilayer Al-Cr-Si-N coatings, Surf. Coat. Technol 296 (2016) 33-39. https://doi.org/10.1016/j.surfcoat.2016.04.017
  8. H. H. Jin, J. W. Kim, K. W. Kim, S. Y. Yoon, The Effect of Si content on the tribological behaviors of Ti-Al-Si-N coating layers, J. Korean Ceram. Soc 42 (2005) 88-93. https://doi.org/10.4191/KCERS.2005.42.2.088
  9. I. W. Park, D. S. Kang, J. J. Moore, S. C. Kwon, J. J. Rha, and K. H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system, Surf. Coat. Technol 201 (2007) 5227-5227.
  10. M. Huang, G. Lin, Y. Zhao, C. Sun, L. Wen, C. Dong, Macro-particle reduction mechanism in biased arc ion plating of TiN, Surf. Coat. Technol 176 (2003) 109-114. https://doi.org/10.1016/S0257-8972(03)00017-3
  11. C. N. Tai, E. S. Koh, K. Akari, Macroparticles on TiN films prepared by the arc ion plating process, Surf. Coat. Technol 43 (1990) 324-335.
  12. S. P. Lau, Y. H. Cheng, J. R. Shi, P. Cao, B. K. Tay, X. Shi, Filtered cathodic vacuum arc deposition of thin film copper, Thin Sol. Films 398 (2001) 539-543.
  13. V. Miikkulainen, M. Leskela, M. Ritala, R. L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends, J. Appl. Phys 113 (2013) 021301-021403. https://doi.org/10.1063/1.4757907
  14. A. S. Alshamsi, Corrosion of heat-treated 304SS in the presence of molybdate ions in hydrochloric acid, Int. J. Electrochem. Sci 8 (2013) 591-605.