• Title/Summary/Keyword: Covering group

Search Result 239, Processing Time 0.018 seconds

COVERING GROUPS IN THE THEORY OF GROUP REPRESENTATION

  • Choi, Eun-Mi
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.547-555
    • /
    • 1996
  • In this paper, we shall study the generalized covering group which plays a role for Schur multiplier. We discuss the lifting property over covering group and product of covering groups.

  • PDF

REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.279-292
    • /
    • 2009
  • As a survey-type article, the paper reviews some results on a regular covering space in digital covering theory. The recent paper [10](see also [12]) established the notion of regular covering space in digital covering theory and studied its various properties. Besides, the papers [14, 16] developed a discrete Deck's transformation group of a digital covering. In this paper we study further their properties. By using these properties, we can classify digital covering spaces. Finally, the paper proposes an open problem.

UTILITY OF DIGITAL COVERING THEORY

  • Han, Sang-Eon;Lee, Sik
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.695-706
    • /
    • 2014
  • Various properties of digital covering spaces have been substantially used in studying digital homotopic properties of digital images. In particular, these are so related to the study of a digital fundamental group, a classification of digital images, an automorphism group of a digital covering space and so forth. The goal of the present paper, as a survey article, to speak out utility of digital covering theory. Besides, the present paper recalls that the papers [1, 4, 30] took their own approaches into the study of a digital fundamental group. For instance, they consider the digital fundamental group of the special digital image (X, 4), where X := $SC^{2,8}_4$ which is a simple closed 4-curve with eight elements in $Z^2$, as a group which is isomorphic to an infinite cyclic group such as (Z, +). In spite of this approach, they could not propose any digital topological tools to get the result. Namely, the papers [4, 30] consider a simple closed 4 or 8-curve to be a kind of simple closed curve from the viewpoint of a Hausdorff topological structure, i.e. a continuous analogue induced by an algebraic topological approach. However, in digital topology we need to develop a digital topological tool to calculate a digital fundamental group of a given digital space. Finally, the paper [9] firstly developed the notion of a digital covering space and further, the advanced and simplified version was proposed in [21]. Thus the present paper refers the history and the process of calculating a digital fundamental group by using various tools and some utilities of digital covering spaces. Furthermore, we deal with some parts of the preprint [11] which were not published in a journal (see Theorems 4.3 and 4.4). Finally, the paper suggests an efficient process of the calculation of digital fundamental groups of digital images.

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

Nilpotent action by an elementary amenable group and euler characteristic

  • Lee, Jong-Bum;Park, Cnah-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.253-258
    • /
    • 1996
  • Let X be a finite connected CW-complex, $\Gamma = \pi_1(X)$ its fundamental group, $\tilde{X}$ its universal covering space. Then $\Gamma$ acts on $\tilde{X}$ by covering transformations and on the homology group $H_*(\tilde{X})$. In this note we establish the following vanishing result for the Euler characteristic $x(X)$ of X.

  • PDF

GROUPOID AS A COVERING SPACE

  • Park, Jong-Suh;Lee, Keon-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.67-75
    • /
    • 1984
  • Let X be a topological space. We consider a groupoid G over X and the quotient groupoid G/N for any normal subgroupoid N of G. The concept of groupoid (topological groupoid) is a natural generalization of the group(topological group). An useful example of a groupoid over X is the foundamental groupoid .pi.X whose object group at x.mem.X is the fundamental group .pi.(X, x). It is known [5] that if X is locally simply connected, then the topology of X determines a topology on .pi.X so that is becomes a topological groupoid over X, and a covering space of the product space X*X. In this paper the concept of the locally simple connectivity of a topological space X is applied to the groupoid G over X. That concept is defined as a term '1-connected local subgroupoid' of G. Using this concept we topologize the groupoid G so that it becomes a topological groupoid over X. With this topology the connected groupoid G is a covering space of the product space X*X. Further-more, if ob(.overbar.G)=.overbar.X is a covering space of X, then the groupoid .overbar.G is also a covering space of the groupoid G. Since the fundamental groupoid .pi.X of X satisfying a certain condition has an 1-connected local subgroupoid, .pi.X can always be topologized. In this case the topology on .pi.X is the same as that of [5]. In section 4 the results on the groupoid G are generalized to the quotient groupoid G/N. For any topological groupoid G over X and normal subgroupoid N of G, the abstract quotient groupoid G/N can be given the identification topology, but with this topology G/N need not be a topological groupoid over X [4]. However the induced topology (H) on G makes G/N (with the identification topology) a topological groupoid over X. A final section is related to the covering morphism. Let G$_{1}$ and G$_{2}$ be groupoids over the sets X$_{1}$ and X$_{2}$, respectively, and .phi.:G$_{1}$.rarw.G$_{2}$ be a covering spimorphism. If X$_{2}$ is a topological space and G$_{2}$ has an 1-connected local subgroupoid, then we can topologize X$_{1}$ so that ob(.phi.):X$_{1}$.rarw.X$_{2}$ is a covering map and .phi.: G$_{1}$.rarw.G$_{2}$ is a topological covering morphism.

  • PDF

Effects of Covering Newborn's Head after Bath on Body Temperature, Heart Rate and Arterial Oxygen Saturation

  • Kim, Dong-Yeon;Park, Ho-Ran
    • Child Health Nursing Research
    • /
    • v.18 no.4
    • /
    • pp.201-206
    • /
    • 2012
  • Purpose: In this study changes were observed in body temperature, heart rate and arterial oxygen saturation (SaO2) of newborns after bathing and to determine the effects of covering their heads with cotton hats after bathing. Methods: Participants were 58 newborn infants, 31 in the experimental group had their heads covered with cotton hats after their bath while 27 in the control group did not. Body temperature, arterial oxygen saturation and heart rate were measured at 8 consecutive times after bathing. Data were analyzed using t-test and repeated measures ANOVA. Results: Body temperature declined shortly after bathing. The experimental group showed faster recovery (p<.001). Heart rate increased after bathing in both groups. Heart rate in the experimental group decreased for 120 minutes and gradually increased to baseline (p<.001). In the control group, heart rate decreased for 180 minutes and then increased but did not reach the baseline (p<.001). Arterial oxygen saturation decreased shortly after bathing and recovery to the baseline was more rapid in the experimental group (30 minutes vs. 60 minutes) (p<.001). Conclusion: With significant changes observed in newborns' body temperature, arterial oxygen saturation and heart rate, covering the head right after bathing is effective in stabilizing infants' physiological system.

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1479-1503
    • /
    • 2007
  • In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

SOME HYPERBOLIC SPACE FORMS WITH FEW GENERATED FUNDAMENTAL GROUPS

  • Cavicchioli, Alberto;Molnar, Emil;Telloni, Agnese I.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.425-444
    • /
    • 2013
  • We construct some hyperbolic hyperelliptic space forms whose fundamental groups are generated by only two or three isometries. Each occurring group is obtained from a supergroup, which is an extended Coxeter group generated by plane re ections and half-turns. Then we describe covering properties and determine the isometry groups of the constructed manifolds. Furthermore, we give an explicit construction of space form of the second smallest volume nonorientable hyperbolic 3-manifold with one cusp.