Comm. Korean Math. Soc. 11 (1996), No. 3, pp. 547-555

COVERING GROUPS IN THE THEORY
OF GROUP REPRESENTATION

Eunwmi CHoI

ABSTRACT. In this paper, we shall study the gencralized covering group
which plays a role for Schur multiplier. We discuss the lifting property
over covering group ad product of covering groups.

1. Introduction

The purpose of this paper is to study one of the central topics of the
theory of representations; so called covering group.

If F'is an algebraically closed field, a device invented by Schur yields
a finite group G* such that all projective representations of G can be
lifted to ordinary representations of G*. Originally Schur referred to G*
as a “representation group (Darstellungsgruppe)” of G, but as a more
popular term, it is called “covering group”.

A covering group G* of a group G over a field F satisfies the following:

(1) there is a central extension 1 — A — G* - G — 1 such
that any projective representation of G over F lifts projectively to an
ordinary representation of G*. That is, any projective representation of
G over F is projectively equivalent to one that can be lifted.

(2) |A| = |H*G,F*)|, where F*=F —{0}.

Thus, a covering group G* exists in the case that the second cohomol-
ogy group H%(G, F*)is finite. If Fis an algebraically closed field, then
a covering group G* always exists, and this gives a foundation of Schur’s
theory of projective representation. However, it is also well-known that
H?*(G, F*) need not be finite so there are no covering groups of G over
any field.
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In order to generalize Schur’s theory over to arbitrary field F, Ya-
mazaki [8] used the torsion subgroup #(F*) of F* rather than F* itself,
and used the fact that ¢(F*) — F* induces an injective homomorphism
H*(G,t(F*)) — H*G,F*), and that H?*(G.t(F*)) is always a finite
group.

There is another simple device. Let o € Z%((;, F*) be a 2-cocycle
and let A(a) be the subgroup of F* generated by all the values of a.
Define a new group G(a) consisting of all pairs (¢, g) € A(a) x G with
multiplicative operation (a,¢)(b,z) = (aba(g,z),gz). Then G(a) —
G, (a,g) > g is a surjective homomorphism whose kernel is a central
subgroup isomorphic to 4(a). This provides a central group extension

1 — A{a) — Gla) -G — 1

and it is proved that any a-representation of G lifts to an ordinary
representation of G(a). A consideration of special case where a is
of finite order was given by Fong [4] or Reynolds [7]. This additional
condition on a says that G(«)is finite. The G(a) is called an a-covering
group of G, and plays a role for covering group.

2. Generalized a-covering Groups and Lifting Property

A goal of this section is to generalize an «-covering group and then
prove lifting property on that.

Let F be a field of characteristic p > 0 and & be a group. Let
a € Z*G,F*) and | = o(a) < 0o. Denote a primitive t-th root of unity
by (, for integer t € Z.

LEMMA 1. If p is prime then p does not divide |, and (; € F*.

PROOF. For any g.x € G, a(g.r) can be written as «(g,r) = C(k
for some k € Z, and (a{g.z)| g, € G) C ({;). If we suppose that
a(g,z)lg,z € G)| = I; < I, then (a(g,:r))l] == 1 for all g,z € G,
contrary to the minimality of [. Therefore. [, = [ so that (; € F*. this
completes the proof.

Let F®G be a twisted group algebra with an #-basis {a, | ¢ € G}
such that agja, = a(g,z)ay, for g,z € G, and @y = 1. By Lemma 1,
Gla)={¢jag | g€ G. 0<i<1-1}C F°G.
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Let r be any positive integer divisible by o(a) = [ < oo, and assume
that F* contains a primitive r-th root ¢, of unity. Then p does not
divide r, and a multiplicative group G.(a) = {(la, |0<i<r—-1, g€
G} in FG is called a generalized a-covering group. Of course, A,(a)
is defined as a subgroup consisting of (la; for all 0 < i < r—1. We may
choose r = o(a); thus G,(a) is a generalization of a-covering group
G(a) (we may refer to [3]). The next theorem shows simple relations
of (generalized) a-covering groups.

THEOREM 1. Let r be an integer divisible by | = o(a).

(1) Amap n : Gy(a) = G by (la,+ g is a surjective homomorphism
whose kernel is a central subgroup A.(a) = {Cla; | i € Z}. Hence
7 gives rise to a central cyclic group extension

1—- A (a) > Gla)— G- 1.

(2) [Gr(a)] =r|G| = |Ar(a)[|G].

(3) G(a) is a normal subgroup of G.(a), and G (a)/G(a) is cyclic of
order r/l. Hence G(a) contains a commutator subgroup of G(a),
which in fact equals a commutator subgroup of G(a).

(4) Furthermore, G,.(a) is a central product of G(a) and A.(a) with
Gla)N A, (a) = A(a) € Z(G{a)). Thus G, (a) is an epimorphic
image of G(a) X A, (a).

ProoF. Certainly, A,(a) and G(«) are normal in G,(a) and G =
Gr(a)/Ar(a). And G.(a)=G(a)d(a), [Glo), Ar(a)]= ([u,v]lue
G(a),v € A.(a)) = 1. Thus G,(«) is a central product of G(«) and
A, (a). Refer to the diagram.

Grla)
\

G(a)

Alr(d.) l

\ |

Aa)

Denote by ¢* € G,.(a) arbitrary preimage of ¢ € G by =, i.e.,
} g y g
g* =(;a, forsome i€ Z.



550 FEunmi Choi

In order to show that group extension in (1) of Theorem 1 has a lifting
property, recall some definitions and preliminary results.

Let V' be a finite dimensional vector space over « field F. A projective
representation P : G — GL(V) of G over F satisfies

P(lg) =1y, P(g)P(z)=alg,z)P(gr) forall g,z € G,

where o is a mapping G'x G — F*. Then a is it Z%(G,F*), and P is
called an a-representation. Two projective representations P; : G —
GL(V;) (i = 1,2) are said to be projectively equivalent denoted by P, ~p
Py, if there exists a mapping x: G — F* with u(1) = 1 and a vector
space isomorphism f: Vi — V, such that Py(g) = u(g)fPi(g)f~" for
all g € G.

LEMMA 2. (refer to [5])

(1) The a-representations P of G correspond bijectively to the represen-
tations T of F*G by P(g) = T(a,).

(2) If P; is a;-representations on V; (i = 1,2) such that P, ~, P,
then «; is cohomologous to a,. Conversely, if ay is cohomologous
to ay, and Py is an aj-representation on V, then there is an ao-
representation Py on V such that P, ~, P,.

Let 1 = A BLCo1 be a central group extension of A by C.
Given a projective representation P: C — GL(), we say P lifts to
an ordinary representation P*: B — GL(V) if
(1) P*(a) (a € A) is a scalar multiple of 1y
(2) there is a section s of f such that P(c) = P*(s(c)) for c € C.

More generally, we say that P lifts projectively to an ordinary repre-
sentation R: B — GL(V) if R satisfies (1) and the next:

(3) there is a section s of f together with a map ¢t : C — F* such that
P(c) =t(c)R(s(c)) forall c € C.

The next theorem shows our goal; the lifting property.

THEOREM 2.

(1) Every a-representation of G can be lifted to an ordinary representa-
tion of G,(a) using the same section of 7 : G (a) — G. So, there is
a bijection between the set of all a-representations of G and that of
all lifted representations of G (a).
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(2) Let B € Z*(G, F*) be cohomologous to o. Then any j3-representation
of G lifts projectively to an ordinary representation of G ,(a).

PROOF. Let P be any a-representation of G. Let s : G — G.(a)
be a map defined by s(g9) = a4 for all ¢ € G. Then s(1) = 16, (o)
and 7s = 1, thus s is a section of 7. We now define a map R :
G.(a) = GL(V) by R((la,)=(!P(g) forall g € G,i € Z. Consider
amap T:F%G — Endp(V) defined by 3./ skgag = 3 ke P(9).
Then T is a vector space homomorphism by F-linearity and T(aja,) =
T(a(g,z)age) = alg,z)P(gz) = P(g)P(z) = T(ag)T(a;) for all g,z €
G, by Lemma 2 (1). Hence T is an F-algebra homomorphism. But
since R is the restriction of T to G,.(a), T is an ordinary representation
on Gr(a). Further R(s(g)) = R(ay) = P(g) for all ¢ € G, this yields
that P lifts to R by the section s of 7.

Let A and B be the sets of all a-representations of G and of all lifted
ordinary representations of G,(«), respectively. Then using the section
s, there is a bijection @ : .4 — B defined by P +» R such that Rs = P.
This proves (1).

Let U be a f-representation on G. Since (3 is cohomologous to a,
there is a map A : G — F* such that a = f#(6}), ie., afg,z) =
AMg)A(z)A~Y(gz)B(g,z). Here, & is of course the boundary map. Define
P on G by P(g) = AMg)U(g) for all ¢ € G. Then P(g)P(z) =
A@M2)U(g)U(z) = A(g)Ma)B(92)U(g9z) = alg, z)Mgz)U(gz) = a(g,
z)P(gz), thus P is an a-representation on G, and P lifts to P* which
is an ordinary representation on G.(a). Then P*(lg, (4)) is a scalar
multiple of 1y, and there is a section s of 7 with P(g) = P*(s(g))
for all ¢ € G. Thus, T(g) = A7 (g)P(g) = A~ (g)P*(s(g)). Taking
t:G — F*by t(g9) = A"Y(g), we can prove that T lifts projectively to
P*on G.(a).

COROLLARY 1. For any linearly equivalent «-representations of G,
their lifted representations of G,(«) are equivalent.

PROOF. Supposethat P;: G — GL(V;) (V;is a vector space: = 1,2)
are oa-representations of G which are equivalent. There is a vector
space isomorphism ¢ : V; — V; such that Py(g) = ¢Pi(g)¢~! for all
g € G. Let R; be the lifted representation of P; (i = 1,2) using the
section s in the proof of the Theorem 2. For ¢* € G,(a), we have
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= C]ag for some j € Z and Ry((lay) = (IPyg) = #CIPi(g)p~ "' =
¢R1(C az)¢~!, hence R, is equivalent to Ry by taking the same vector
space isomorphism ¢.

Clearly it is not true that any ordinary representation of G (o) comes
from a projective representation on G.

COROLLARY 2. Every ordinary representation of G(a) whose re-
striction to A,(«a) Is a scalar multiple of the identity mapping in GL(V')
comes from some a-representations using the section s.

PROOF. The proof follows immediately from the fact that R(Ci1r) =
¢ IdegT Ciegy, (vy, where T is a representation o F2G.

Let F be a field of any characteristic p with algebraic closure E. For
any group H, denote by Zp(H) a subgroup of H consisting of all z in
the center Z(H) of H satisfying :™(?) = z, where o € Gal(E/F) and

m(co) is an integer such that (7,6 = = (n, ) and m(o) =1 (mod n,). for
P’

all positive integer n divisible by exp(H).

LEMMA 3. (refer to [2]) Let 1 —+ 4 - H — G — 1 be a central
group extension such that the image of A is a cyclic p'-subgroup of
Zp(H). Then there exists a 2-cocycle f € Z*(G,1™*) with finite order
dividing |A| = r such that H = G.(f), and the given extension
commutes with 1 — A,.(f) - G (f) — G — 1.

This lemma provides a reasoning to study the generalized covering
group rather than the covering group. Combining with Theorem 2, we
have more general situation for lifting.

COROLLARY 3. Suppose we have a central group extension 1 — A —
H — G — 1 such that the image of A is a cyclic p'-subgroup of Zrp(H).
Then there exists a 2-cocycle f € Z*(G, F*) and every f-representation
of G lifts to an ordinary representation on H.

Certainly the f can be obtained as in Lemma 3.
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3. Some Group Algebras

The study of representations of G over F is equivalent to the study
of modules over the group algebra F'G, and the role played by the group
algebra is taken by the twisted group algebra F®G when considering
projective representations. The purpose of this section is to provide
relations between some group algebras.

LEMMA 4. (refer to [5])
(1) Let 1 - A— H — G — 1 be a finite central group extension. Then

FH =~ H FXG,
xeHom(A,F*)

where x is the image of x € Hom(A,F*) by a transgression map
Hom(A,F*) —» H*G,F*).
(2) For a covering group G* of G, we have

FG* = H Fia,
feT

where T is a transversal of Z*(G, F*) in B*(G, F*).

Furthermore, for & € Z*(@, F*) of finite order I, FG(a) is isomorphic
to Hl ' F*'G. We have a similar result with respect to G,(a).

THEOREM 3. Let a € Z*(G, F*) be of finite order . Then FG.(a) =
FG(a), thus FG.(a) =[]\l F'G
ProOF. G(a) C G ( a) implies that FG(a) < FG.(a). Since any
k

element in FG,(a) is of the form k(la, for some £k € F and since
¢t € F*, k(la, = ta, € FG(«) for some t € F*.

For o € Z*(G,F*), 3 € Z*(H,F*), a map a x ﬂ (G x H)yx (G x
H) — F* defined by (& x B)((g,k),(91,h1)) = alg,91)B8(h, h1) with
9,91 € G; h,hy € H is easily seen to be an element of Z%(G x H, F*).
The a x 3 is called an outer product of a and 3.

LEMMA 5. ([5]) F*G® FPH = F**3(G x H) as F-algebras.
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THEOREM 4. Let o € Z*(G,F*) and § € Z%(H, F*) with finite or-
ders | and m, respectively, which are relatively prime. Then Gla) x

H(B) = (G x H)(a x B).

PROOF. Let {ay| g € G}, {bx| h € H} and {c(y )| (9,h) € G x H)
be bases for F*G, FPH and F**%(G x H), respectively. Note that

C(g,h)c(gl,h1) = (C& X ﬁ)((gs h)ﬂ(glvhl))c(g,h)(gl,h1)1 for 9,91 € Gv h-,hl €
H. Consider a map defined by

b Gla) x H(B) = (G x H)(a x 8), ¥(Clag, 2,bn) = CGChe(gn:
Then

L/”'((ag? bh)(agl ! bh1 )) - u’)(a(g, g1 )agm s B(h~ hl)bhhx)
= a(g,gl)ﬂ(h, hl)c(ggl,hhl) = ((X X 5)((97 h)v (.‘Ilvhl))c(g,h)(gl,hx)

= C(g,h)C(g1,hy) = Y(ag, bp)¥(ay,, by, );

hence 1 is a homomorphism. Since (ax3)™((g,h),(g1,h1)) = (alg, g1)
B(h,h1))'™ =1, o(a x 3) divides lm. Let ola x ) = k for some k > 0.
Then 1 = o*(g,¢,)8%(h,hy), so that a*(g,g1) = B7*(h,hy). Further
since, o{a*) = I/ ged(k,1) and of(3~*) = m/ ged(k,m), we have that
I/ ged(k,l) = m/ged(k,m) = 1 (due to ged(l,mm = 1). Hence. both
! and m divides k, and so does lm. Therefore. o(a x 8) = lm and
(G x H)(a x B)] = |G x H|lm = |G||H|lm = |G(a)||H(8)|, this shows

that ¢ is an isomorphism.
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