• Title/Summary/Keyword: Cover net

Search Result 172, Processing Time 0.025 seconds

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

Multi-unit Level 3 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Sung-yeop;Jung, Yong Hun;Han, Sang Hoon;Han, Seok-Jung;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1246-1254
    • /
    • 2018
  • The importance of performing Level 3 probabilistic safety assessments (PSA) along with a general interest in assessing multi-unit risk has been sharply increasing after the Fukushima Daiichi nuclear power plant (NPP) accident. However, relatively few studies on multi-unit Level 3 PSA have been performed to date, reflecting limited scenarios of multi-unit accidents with higher priority. The major difficulty to carry out a multi-unit Level 3 PSA lies in the exponentially increasing number of multi-unit accident combinations, as different source terms can be released from each NPP unit; indeed, building consequence models for the astronomical number of accident scenarios is simply impractical. In this study, a new approach has been developed that employs the look-up table method to cover every multi-unit accident scenario. Consequence results for each scenario can be found on the table, established with a practical amount of effort, and can be matched to the frequency of the scenario. Preliminary application to a six-unit NPP site was carried out, where it was found that the difference between full-coverage and cut-off cases could be considerably high and therefore influence the total risk. Additional studies should be performed to fine tune the details and overcome the limitations of the approach.

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Simulation and design of individual neutron dosimeter and optimization of energy response using an array of semiconductor sensors

  • Noushinmehr, R.;Moussavi zarandi, A.;Hassanzadeh, M.;Payervand, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.293-302
    • /
    • 2019
  • Many researches have been done to develop and improve the performance of personal (individual) dosimeter response to cover a wide of neutron energy range (from thermal to fast). Depending on the individual category of the dosimeter, the semiconductor sensor has been used to simplify and lightweight. In this plan, it's very important to have a fairly accurate counting of doses rate in different energies. With a general design and single-sensor simulations, all optimal thicknesses have been extracted. The performance of the simulation scheme has been compared with the commercial and laboratory samples in the world. Due to the deviation of all dosimeters with a flat energy response, in this paper, has been used an idea of one semi-conductor sensor to have the flat energy-response in the entire neutron energy range. Finally, by analyzing of the sensors data as arrays for the first time, we have reached a nearly flat and acceptable energy-response. Also a comparison has been made between Lucite-PMMA ($H_5C_5O_2$) and polyethylene-PE ($CH_2$) as a radiator and $B_4C$ has been studied as absorbent. Moreover, in this paper, the effect of gamma dose in the dosimeter has been investigated and shown around the standard has not been exceeded.

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.

Generic and adaptive probabilistic safety assessment models: Precursor analysis and multi-purpose utilization

  • Ayoub, Ali;Kroger, Wolfgang;Sornette, Didier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2924-2932
    • /
    • 2022
  • Motivated by learning from experience and exploiting existing knowledge in civil nuclear operations, we have developed in-house generic Probabilistic Safety Assessment (PSA) models for pressurized and boiling water reactors. The models are computationally light, handy, transparent, user-friendly, and easily adaptable to account for major plant-specific differences. They cover the common internal initiating events, frontline and support systems reliability and dependencies, human-factors, common-cause failures, and account for new factors typically overlooked in many PSAs. For quantification, the models use generic US reliability data, precursor analysis reports, the ETHZ Curated Nuclear Events Database, and experts' opinions. Moreover, uncertainties in the most influential basic events are addressed. The generated results show good agreement with assessments available in the literature with detailed PSAs. We envision the models as an unbiased framework to measure nuclear operational risk with the same "ruler", and hence support inter-plant risk comparisons that are usually not possible due to differences in plant-specific PSA assumptions and scopes. The models can be used for initial risk screening, order-of-magnitude precursor analysis, and other research/pedagogic applications especially when no plant-specific PSAs are available. Finally, we are using the generic models for large-scale precursor analysis that will generate big picture trends, lessons, and insights.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.

Performance evaluation of the 76 cm telescope at Kyung Hee Astronomical Observatory (KHAO)

  • Ji, Tae-Geun;Han, Jimin;Ahn, Hojae;Lee, Sumin;Kim, Dohoon;Kim, Kyung Tae;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49.3-49.3
    • /
    • 2021
  • The 76 cm telescope in Kyung Hee Astronomical Observatory is participating in the small telescope network of the SomangNet project, which started in 2020. Since the installation of the telescope in 1992, the system configuration has been changed several times. The optical system of this telescope has a Ritchey-Chrétien configuration with 76 cm in diameter and the focal ratio is f/7. The mount is a single fork equatorial type and its control system is operated by TheSkyX software. We use a science camera with a 4k × 4k CCD and standard Johnson-Cousins UBVRI filters, which cover a field of view of 23.7 × 23.7 arcmin. We are also developing the Kyung Hee Automatic Observing Software for the 76 cm telescope (KAOS76) for efficient operations. In this work, we present the standard star calibration results, the current status of the system, and the expected science capabilities.

  • PDF