DOI QR코드

DOI QR Code

Simulation and design of individual neutron dosimeter and optimization of energy response using an array of semiconductor sensors

  • Noushinmehr, R. (Nuclear Engineering and Physics Faculty, Amirkabir University of Technology) ;
  • Moussavi zarandi, A. (Nuclear Engineering and Physics Faculty, Amirkabir University of Technology) ;
  • Hassanzadeh, M. (Nuclear Science and Technology Research Institute (NSTRI), Reactor and Nuclear Safety School) ;
  • Payervand, F. (Nuclear Science and Technology Research Institute (NSTRI), Radiation Application Research School)
  • Received : 2018.02.17
  • Accepted : 2018.09.14
  • Published : 2019.02.25

Abstract

Many researches have been done to develop and improve the performance of personal (individual) dosimeter response to cover a wide of neutron energy range (from thermal to fast). Depending on the individual category of the dosimeter, the semiconductor sensor has been used to simplify and lightweight. In this plan, it's very important to have a fairly accurate counting of doses rate in different energies. With a general design and single-sensor simulations, all optimal thicknesses have been extracted. The performance of the simulation scheme has been compared with the commercial and laboratory samples in the world. Due to the deviation of all dosimeters with a flat energy response, in this paper, has been used an idea of one semi-conductor sensor to have the flat energy-response in the entire neutron energy range. Finally, by analyzing of the sensors data as arrays for the first time, we have reached a nearly flat and acceptable energy-response. Also a comparison has been made between Lucite-PMMA ($H_5C_5O_2$) and polyethylene-PE ($CH_2$) as a radiator and $B_4C$ has been studied as absorbent. Moreover, in this paper, the effect of gamma dose in the dosimeter has been investigated and shown around the standard has not been exceeded.

Keywords

References

  1. S. Pomp, Tutorial on neutron physics in dosimetry, Radiat. Meas. 45 (2010) 1090-1095. https://doi.org/10.1016/j.radmeas.2010.06.021
  2. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons Inc, New York, 2000.
  3. ICRP publication 74 conversion coefficients for use in radiological protection against external radiation ann, ICRP 26 (3-4) (1996).
  4. ICRP General Principles of Monitoring for Radiation Protection of Workers, 1982. Publication 35, ICRP9.
  5. M. Wielunski, R. Sch utz, E. Fantuzzi, A. Pagnamenta, W. Wahl, J. Palf alvi, P. Zombori, A. Andrasi, H. Stadtmann, Ch Schmitzer, Study of the sensitivity of neutron sensors consisting of a converter plus Si charged-particle detector, Nucl. Instrum. Meth. Phys. Res. 517 (2004) 240-253. https://doi.org/10.1016/j.nima.2003.07.032
  6. J. Borany, B. Schmidt, R. Gr otzschel, The application of high energy ion implantation for silicon radiation detectors, Nucl. Instrum. Meth. A 377 (1996) 514. https://doi.org/10.1016/0168-9002(96)00235-5
  7. M. Luszik-Bhadra, W.G. Alberts, E. Dietz, B.R.L. Siebert, Feasibility study of an individual electronic neutron dosemeter radiation protection, Dosimetry 70 (1-4) (April 1997) 97-102.
  8. C. Schmitzer, H. Stadtmann, W. Wahl, M. Wielunski, A. Andrasi, J. Palf alvi, Monitoring External Irradiation, F14P CT96 0049 Final Report, OEFZS-G-0004, August 1999.
  9. M. Luszik-Bhadra, Individual monitoring in mixed neutron/photon fields using a single silicon detector radiation protection, Dosimetry 101 (1-4) (2002) 179-182. https://doi.org/10.1093/oxfordjournals.rpd.a005962
  10. T. Aoyama, Y. Oka, K. Honda, C. Mori, A neutron detector using silicon PIN photodiodes for personal neutron dosimetry, Nucl. Instrum. Methods Phys. Res., Sect. A 314 (1992) 590. https://doi.org/10.1016/0168-9002(92)90253-Z
  11. J. Barthe, T. Lahaye, T. Moiseer, G. Portal, Personal neutron diode dosemeter, Radiat. Protect. Dosim. 47 (1-4) (May 1993) 397-399. https://doi.org/10.1093/oxfordjournals.rpd.a081774
  12. E. Savvidis, M. Zanami, Efficiencies of an SSNTD and an electronic neutron dosemeter with the same (n, alpha) (n,p), Converter Radiation Protection Dosimetry 70 (1-4) (April 1997) 83-86. https://doi.org/10.1093/oxfordjournals.rpd.a032024
  13. M. Sasaki, T. Nakamura, N. Tsujimura, O. Ueda, T. Suzuki, Development and characterization of real-time personal neutron dosemeter with two silicon detectors, Nucl. Instrum. Meth. Phys. Res. 418 (1998) 465-475. https://doi.org/10.1016/S0168-9002(98)00888-2
  14. M. Luszik-Bhadra, Electronic personal dosemeters: the solution to problems of individual monitoring in mixed neutron/photon fields, Radiat. Protect. Dosim. 110 (No 1-4) (2004) 747-752. https://doi.org/10.1093/rpd/nch181
  15. T. Bolognese-Milsztajn, M. Ginjaume, M. Luszik-Bhadra, F. Vanhavere, W. Wahl, A. Weeks, Active Personal Dosemeters for Individual Monitoring and Other New Developments Radiation Protection Dosimetry 112 (No. 1) (2004) 141-168. https://doi.org/10.1093/rpd/nch286
  16. M. Luszik-Bhadra, W. Wendt, M. Weierganz, The electronic neutron/photon dosemeter PTB DOS-2002, Radiat. Protect. Dosim. 110 (1-4) (2004) 291-295. https://doi.org/10.1093/rpd/nch180
  17. B.P. Denise, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008. LA- CP-07-1473.
  18. J.F. Ziegler, SRIM - the stopping and range of ions in matter. http://www.srim.org/SRIMStatistics.htm, 2010.
  19. R. Sch utz, M. Wielunski, G. Fehrenbacher, J.P. Biersack, W. Wahl, Interactions of neutrons with light elements and silicon, Radiat. Protect. Dosim. 84 (1-4) (1993) 393. https://doi.org/10.1093/oxfordjournals.rpd.a032764
  20. ISO 4037-4, X and Gamma Reference Radiation for Calibrating Dosemeters and Dose Rate Meters and for Determining Their Response as a Function of Photon Energy, Part 4: Calibration of Area and Personal Dosemeters in Low Energy X Reference Radiation Fields, 2004.
  21. NISTIR 4999, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1993.
  22. J.E. Martin, Physics for Radiation Protection, 12, Wiley-VCH Verlag & Co. KGaA, Boschstr, 2013, p. 6946. Weinheim, German.
  23. J.M. Bordy, T. Lahaye, Single diode detector for individual neutron dosimetry using a pulse shape analysis radiation protection, Dosimetry 70 (1-4) (April 1997) 73-78.
  24. D.T. Bartlett, R.J. Tanner, D.J. Thomas, Active neutron personal dosemeters a review of current status, Radiat. Protect. Dosim. 86 (2) (1999) 107-122. https://doi.org/10.1093/oxfordjournals.rpd.a032930
  25. ISO 8529, Reference Neutron Radiations, Part 1: Characteristics and Methods of Production, 2001.

Cited by

  1. Wearable Dosimeters for Medical and Defence Applications: A State of the Art Review vol.6, pp.5, 2019, https://doi.org/10.1002/admt.202000895