• Title/Summary/Keyword: Coupled-test

Search Result 828, Processing Time 0.034 seconds

Analysis for Operation Point Change in Mode Transition at the Turbopump-Gas Generator Coupled Test (터보펌프-가스발생기 연계시험의 모드 변환 중간 작동점 분석)

  • Nam, Chang-Ho;Kim, Seung-Han;Park, Soon-Young;Kim, Cheul-Woong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The characteristics at the intermediate operation point of the turbopump-gas generator(TP-GG) coupled test were investigated by analytical method. The pump outlet pressure, gas generator mixture ratio, gas generator pressure, and temperature were examined considering risk minimization of test. The engine system shows different behavior from the TP-GG coupled test at the intermediate operation point since the combustion pressure feeds back to the flow rate in the lines. The advanced valve changes in the combustor line helps less risky mode transition.

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Deformation Analysis of Solid-Liquid Coupled Structure using Explicit Finite Element Program (외연 유한요소 프로그램을 이용한 고체-액체 조합 구조물의 변형해석)

  • 최형연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.150-155
    • /
    • 2000
  • In this study, deformation analysis for solid-liquid coupled structure has been performed using explicit finite element program In order to model the behavior of liquid, SPH (Smooth Particle Hydrodynamics) algorithm was adopted. Crash test and simulation for the hydro-type impact energy absorber were given as an example of industrial application. The obtained good correlation between the test results and simulation reveals that the proposed method could be used effectively for the structural analysis of solid-liquid coupled problems

  • PDF

A Study on the Performance of a Sprinkler System with Direct-Coupled Waterworks by Full-Scale Fire Test (실화재실험을 통한 상수도 직결형 스프링클러시스템의 성능에 관한 연구)

  • Jung, Jong-Jin;Nam, Dong-Gun;Lim, Woo-Sub
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.39-43
    • /
    • 2011
  • In this research, full-scale fire test was performed on a real house for the evaluation of the performance of waterworks direct-coupled sprinkler system. The fire was set to occur as spontaneous combustion as the cooking oil overheats. The size of house is $56m^2$ and it consists of a living room, a kitchen, and a room. In order to verify the performance of waterworks direct-coupled sprinkler system, it was installed in the kitchen. The result of the test showed that the fire started from the kitchen enlarged up to its ceiling but it was soon exhausted as the sprinkler started to work. The pressure of the waterworks was 0.28 MPa when the sprinkler operated, by which it verified that fire could go out even by waterworks pressure of the general residence.

Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.129-132
    • /
    • 2008
  • For the development of the 30tonf level LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests are performed. To simulate engine operation conditions, combustion chamber was substituted by flow control orifices. In simulated engine system operation environment, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator coupled Test Plant are confirmed. Turbopump and gas generator are confirmed to operate well in simulated engine environment. The control system for regulating power and mixture ratio of Test Plant are also successfully confirmed.

  • PDF

A 2-Gbps Simultaneous Bidirectional Inductively-Coupled Link (동시 양방향 통신이 가능한 2-Gbps 인덕터 결합 링크)

  • Jeon, Minki;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.42-49
    • /
    • 2013
  • A simultaneous bidirectional inductively-coupled link is presented. In the conventional inductively-coupled link, data can be bidirectionally transmitted through channel, however not simultaneously. We propose simultaneous bidirectional link for higher data rate with effective echo cancellation technique. Each chip performs TX-mode and RX-mode simultaneously. Instead chip stacking for test, similar test enviroment is realized in a single chip that is fabricated in a $0.13-{\mu}m$ standard CMOS technology.

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

Turbopump+Gas generator Startup Simulation Cold Flow Test (터보펌프+가스발생기 연계시험기 시동모사 수류시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2009
  • This paper includes test results of 30tonf-level TP+GG startup simulation cold flow test using liquid oxygen and kerosene. Test objectives, coupled test plant configuration, test condition, test procedure of performed tests, and test results are presented.

  • PDF

Bearing Strength of Steel Coupling Beams-Wall Connections depending upon Joint Details (접합부 상세에 따른 철골 커플링 보-벽체 접합부의 지압강도)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Yang Il-Seong;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.113-116
    • /
    • 2004
  • No specific guidelines are for computing the shear strength of steel coupling beam connections embedded in the reinforced concrete shear wall. In this paper, a theoretical study of the strength of hybrid coupled shear wall connections is achieved. The bearing stress at failure in the concrete below the steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the steel coupling beam section to the thickness of the hybrid coupled shear wall. To revise factor affecting shear transfer strength across connections between coupled shear walls and steel coupling beam, experimental studies are achieved. The main test variables were auxiliary details of stud bolts. In this studies, these proposed equations are shown to be in good agreement with the test results reported in the paper and with other test data in the literature.

  • PDF

Study on the Characteristics of Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험 특성 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.38-41
    • /
    • 2009
  • For the technology development of LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests using 30tonf main engine components such as turbopump and gas generator except combustion chamber are performed. In the engine system operation environment, simulating combustion chamber by flow control units, the chill-down procedure, startup characteristics, nominal operability and smooth shutdown of turbopump+gas generator closed-loop coupled Test Plant are successfully confirmed. The serviceability of the turbopump and gas generator are evaluated. The feed-back control system for the turbopump rotational speed and gas generator mixture ratio are also verified. The results of closed-loop coupled test will be used as the technology development for the liquid rocket engine.

  • PDF