• Title/Summary/Keyword: Coupled inductor

Search Result 199, Processing Time 0.026 seconds

Optimized Phase Noise of LC VCO Using an Asymmetrical Inductance Tank

  • Yoon Jae-Ho;Shrestha Bhanu;Koh Ah-Rah;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • This paper describes fully integrated low phase noise MMIC voltage controlled oscillators(VCOs). The Asymmetrical Inductance Tank VCO(AIT-VCO), which optimize the shortcoming of the previous tank's inductance optimization approach, has lower phase noise performance due to achieving higher equivalent parallel resistance and Q value of the tank. This VCO features an output power signal in the range of - 11.53 dBm and a tuning range of 261 MHz or 15.2 % of its operating frequency. This VCO exhibits a phase noise of - 117.3 dBc/Hz at a frequency offset of 100 kHz from carrier. A phase noise reduction of 15 dB was achieved relative to only one spiral inductor. The AIT-VCO achieved low very low figure of merit of -184.6 dBc/Hz. The die area, including buffers and bond pads, is $0.9{\times}0.9mm^2$.

Study on the High Efficiency Bi-directional DC/DC Converter Topology Using Multi-Phase Interleaved Method (Multi-Phase 인터리브드 방식을 이용한 고효율 양방향 DC/DC 컨버터 토폴로지에 관한 연구)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Oh, Seung-Yeol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • This paper proposes an efficient bi-directional DC/DC converter topology using multi-phase interleaved method for power storage system. The proposed converter topology is used for a power storage system using a vanadium redox flow battery(VRFB) and is configured to enable bidirectional power flow for charging and discharging of VRFB. Proposed DC/DC converter of the 4 leg method is reduced to 1/4 times the rating of the reactor and the power semiconductor device so can be reduce the system size. Also, proposed topology is obtained the effect of four times the switching frequency as compared to the conventional converter in each leg with a 90 degree phase shift 4 leg method. This can suppress the reduction of the life of the secondary battery because it is possible to reduce the current ripple in accordance with the charging and discharging of VRFB and may increase the efficiency of the entire system. In this paper, it proposed bidirectional high-efficiency DC/DC converter topology Using multi-phase interleaved method and proved the validity through simulations and experiments.

A New Operation Mode to Improve Balancing Speed of Active Cell Balancing Circuits Using Coupled Inductor (결합 인덕터를 이용한 능동형 셀 밸런싱 회로의 밸런싱 속도를 향상시킬 수 있는 새로운 동작 모드)

  • Lee, Sang-Jung;Kim, Myoungho;Kang, Dae-Wook;Baek, Ju-Won;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.372-373
    • /
    • 2019
  • 본 논문은 다중 권선 결합 인덕터를 이용한 능동 셀 밸런싱 회로의 밸런싱 속도를 향상시킬 수 있는 새로운 동작 모드를 제안한다. 다중 권선 결합 인덕터를 사용한 능동 셀 밸런싱 회로는 두 셀이 하나의 결합 인덕터 권선을 공유하며, 셀과 결합 인덕터 사이의 연결을 제어하기 위해 셀당 하나의 스위치가 사용된다. 이 회로는 비교적 높은 전압을 갖는 소스 셀에 저장된 에너지를 결합 인덕터에 저장한 뒤, 그 에너지를 목표 셀로 전달하는 방식으로 셀 밸런싱을 수행한다. 하지만, 회로 구조상서로 다른 권선을 공유하고, 동일한 위치에 연결된 셀 간 밸런싱을 수행할 경우, 두 번의 에너지 전달 과정을 통해 목표 셀로 에너지가 전달 되게 된다. 이는 에너지 전달 경로를 증가시키므로 회로의 효율과 셀 밸런싱 속도를 크게 저하시킨다. 본 논문은 위의 셀 조건에서 에너지 전달 경로를 단축시켜 셀 밸런싱 속도를 향상시킬 수 있는 새로운 동작 모드를 제안한다. 새로운 동작 모드 성능은 15W급 시작품을 이용하여 검증되었다.

  • PDF

High-Q Spiral Zeroth-Order Resonators for Wireless Power Transmission (무선 전력 전송용 High-Q 스파이럴 영차 공진기)

  • Park, Byung-Chul;Park, Jae-Hyun;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • In this paper, various spiral zeroth-order resonators are proposed for wireless power transmission. Since a zerothorder resonance(ZOR) mode of meta-material transmission lines has the characteristic of an infinite wavelength, its frequency is independent of physical length. Also, to obtain high transmission efficiencies high-Q resonators and strong coupling coefficient between coupled resonators are required. Therefore, the resonators consist of spiral inductor and lumped capacitor to use the ZOR mode and they are optimized via parametric study and circuit analysis for a high-Q resonator design. The optimized resonators are simulated and compared with a conventional spiral resonator and one of them was fabricated and measured. The fabricated one has a dimension of $20cm{\times}20cm{\times}8cm$($0.009{\lambda}_0{\times}0.009_{\lambda}_0{\times}0.004{\lambda}_0$) and the transmission efficiency of 80 % is measured at 13.56 MHz at transmitted distance of 40 cm.

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

A Study on Coupling Coefficient and Resonant Frequency Controllable Internal PIFA (결합계수 및 공진 주파수 조절이 가능한 내장형 PIFA에 관한 연구)

  • Lee, Sang-Hyun;Lee, Moon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.99-104
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of PIFA(Planner Inverted F Antenna). The resonant frequency as well as amount of coupling between feeding point and shorting post can be adjusted by changing inductance. Because the inductor is connected on shorting post where the strength of electric field is weak, the performance reduction of the proposed antenna is very small enough to neglect. For the variation of the inductance value within 3.3nH, the resonant frequency of antenna can have operating range of 1650MHz ~ 1830MHz. And as be increased the inductance, the coupling coefficient of antenna is over coupled. This means that it can be electrically controlled the resonant frequency and input impedance of antenna by inductance and minimized the mismatch loss. Size reduction of 10% for PIFA is obtained without any major modifications of antenna elements. For the frequency range from 1650 to 1830MHz, reduction of the measured antenna gain is within 0.93dB as varying the value of inductance from 0 to 3.3nH.

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology (InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계)

  • Lee, Sang-Yeol;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF