DOI QR코드

DOI QR Code

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology

InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계

  • Lee, Sang-Yeol (RFIC Research and Education Center, Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Nam-Young (RFIC Research and Education Center, Department of Electronic Engineering, Kwangwoon University)
  • 이상열 (광운대학교 전자공학과 RFIC 센터) ;
  • 김남영 (광운대학교 전자공학과 RFIC 센터)
  • Published : 2007.02.28

Abstract

This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.

본 논문은 InGaP/GaAs HBT 공정을 통해 제작한 적응성궤환 잡음제거시스템용 낮은 위상잡음을 갖는 LC 차동 전압제어 발진기를 제안합니다. 전압제어 발진기는 필터링 기술을 포함한 향상된 공진 탱크 구조를 갖습니다. 비대칭 인덕터 대칭 캐패시터 구조로 제안된 전압제어 발진기의 출력 가변 범위는 207 MHz입니다. 출력 전력은 balun과 케이블 손실을 포함하여 -6.68 dBm입니다. 10 kHz, 100 kHz, 1 MHz에서의 위상잡음은 각각 -102.02, -112.04 그리고 -130.4 dBc/Hz입니다. 이 전압제어 발진기는 총 $0.9{\times}0.9mm^2$ 면적 내에 집적화되었습니다.

Keywords

References

  1. J. H. Yoon, A. R. Koh, and N. Y. Kim, 'A phase noise reduction in differential LC VCO using noise frequency filtering technique', KEES Microwave and Propagation Fall Conference, IEEE MTT/APEMC Korea Chapter, vol. 28, no. 2, pp. 165-168, Sep. 2005
  2. Jae-Ho Yoon, Ah-Rah Koh, and Nam-Young Kim, 'Optimized phase noise of LC VCO using an asymmetric inductance tank in InGaP/GaAs HBT tech nology', Microwave and Optical Technology Letters, Jun. 2006
  3. S. J. Kim, J. Y. Lee, and N. Y. Kim, 'Adaptive feedback interference cancellation system(AF-ICS)', IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 627-630, Jun. 2003
  4. Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998
  5. Donhee Ham, Ali Hajimiri, 'Concepts and methods in optimization of integrated LC VCOs,' IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 896- 909, Jun. 2001 https://doi.org/10.1109/4.924852
  6. Byunghoo Jung, Ramesh Harjani, 'High-frequency LC VCO design using capacitive degeneration', IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2359-2370, Dec. 2004 https://doi.org/10.1109/JSSC.2004.835643
  7. Choong-Yul Cha, Sang-Gug Lee, 'Overcome the phase noise optimization limit of differential LC oscillator with asymmetric capacitance tank structure', Radio Frequency Integrated Circuits(RFIC) Symposium, pp. 583-586, Jun. 2004
  8. John W. M. Rogers, 'The effect of varactor nonlinearity on the phase noise of completely integrated VCOs', IEEE Journal of Solid-State Circuits, vol. 35. no. 9, pp. 1360-1367, Sep. 2000 https://doi.org/10.1109/4.868048
  9. Wei-Zen Chen, Jieh-Tsorng Wu, 'A 2-V 2-GHz BJT variable frequency oscillator', IEEE Journal of Solid-State Circuits, vol. 33, no. 9, pp. 1406-1410, Sep. 1998 https://doi.org/10.1109/4.711339
  10. Mihai A. T. Sanduleanu, Jan Peter Frambach, '1 GHz tuning range, low phase noise, LC oscillator with replica biasing common-mode control and quadrature outputs', ESSCIRC Solid-State Circuits Conference, pp. 506-509, Sep. 2001
  11. Leonard Dauphinee, Miles Copeland, 'A balanced 1.5 GHz voltage controlled oscillator with an integrated LC resonator', IEEE Solid-State Circuits Conference, pp. 390-391, 491, Feb. 1997
  12. Aleksander Dec, Ken Suyama, 'A 1.9 GHz CMOS VCO with micromachined electomechanically tunable capacitors', IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1231-1237, Aug. 2000 https://doi.org/10.1109/4.859516