• 제목/요약/키워드: Coupled Noise

검색결과 684건 처리시간 0.025초

하나로 원자로 수조내 사각보의 동특성 평가 (Evaluation of Dynamic Characteristics of the Box Beam of HANARO Reactor Pool)

  • 김성호;단호진;류정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.525-525
    • /
    • 2005
  • This study is for the seismic analysis and the structural integrity evaluation of the box beam for supporting nuclear fuel-transfer-basket of the HANARO reactor pool. For performing the seismic analysis and evaluating the structural integrity in air or submerged condition, the finite element model of the fuel-transfer-basket and its supporting box beam(the coupled model) was developed. The hydrodynamic effect is also considered by using added mass concept. The seismic response spectrum analyses of the coupled model under the design floor response spectrum loads of Safe Shutdown Earthquake(SSE) were performed. Through the numerical experiments, the analysis results show that the stress values of the coupled model lot the structural integrity are within the ASME Code limits.

  • PDF

파수 영역에서 지향성 구조-음향 연성 방사체 설계 (Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain)

  • 서희선;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF

Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis

  • Liu, Quanmin;Liu, Linya;Chen, Huapeng;Zhou, Yunlai;Lei, Xiaoyan
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.291-306
    • /
    • 2020
  • The noise from the elevated lines of rail transit has become a growing problem. This paper presents a new method for the rapid prediction of the structure-borne noise from steel or composite bridges, based on the receptance and Statistical Energy Analysis (SEA), which is essential to the study of the generation mechanism and the design of a low-noise bridge. First, the vertical track-bridge coupled vibration equations in the frequency domain are constructed by simplifying the rail and the bridge as an infinite Timoshenko beam and a finite Euler-Bernoulli beam respectively. Second, all wheel/rail forces acting upon the track are computed by taking a moving wheel-rail roughness spectrum as the excitation to the train-track-bridge system. The displacements of rail and bridge are obtained by substituting wheel/rail forces into the track-bridge coupled vibration equations, and all spring forces on the bridge are calculated by multiplying the stiffness by the deformation of each spring. Then, the input power to the bridge in the SEA model is derived from spring forces and the bridge receptance. The vibration response of the bridge is derived from the solution to the power balance equations of the bridge, and then the structure-borne noise from the bridge is obtained. Finally, a tri-span continuous steel-concrete composite bridge is taken as a numerical example, and the theoretical calculations in terms of the vibration and noise induced by a passing train agree well with the field measurements, verifying the method. The influence of various factors on wheel/rail and spring forces is investigated to simplify the train-track-bridge interaction calculation for predicting the vibration and noise from steel or composite bridges.

개구부로 연결된 3중 커플룸의 음향특성 (Acoustic Properties of Three-room Coupled System by Connected Two Apertures)

  • 나혜중;임병덕
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.340-349
    • /
    • 2016
  • A coupled room system consists of adjacent rooms and apertures where the sound energy is exchanged between the two rooms. Acoustically, a coupled room system shows a non-exponential decay profile. Most of the related researches have been to analyze the acoustic properties of two-room coupled system so far whereas three-room coupled system were seldom studied. In this regard, this paper aims to analyse the distribution of sound pressure level, sound decay curve of three-room coupled system and sound energy flow between them by using the acoustic diffusion model and to further verify them through experiments. Firstly, the sound pressure level distribution and mean sound pressure level in the steady-state condition are analyzed at various frequencies and source locations. Good agreements are observed in both experiments and analysis results. Secondly, two double slope effect quantifiers of sound attenuation, LDT/EDT and LDT/T10 are compared at various frequencies and for different source locations. The result indicates that LDT/T10, less affected by the early reflection patterns than LDT/EDT, is more suitable to the analysis and experiments of a multi-slope sound decay curve. Lastly, the sound energy flow in each room is analyzed based on the acoustic diffusion model. After the early decay stage, the sound energy is observed to flow from the room with a long reverberation time to the room with a short one.

보 요소를 이용한 파이프의 구조-음향 연성해석 (Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element)

  • 서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

3차원 다영역 공간의 소음해석을 위한 파워흐름경계요소법 개발 (Development of Power Flow Boundary Element Method for 3-dimensional Multi-domain Noise Analysis)

  • 김종도;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.967-974
    • /
    • 2011
  • The direct and indirect PFBEM(power flow boundary element method) for the treatment of the 3 dimensional multi-domain problems are proposed to predict the acoustic energy density in medium to high frequency ranges. In the proposed method, the equation is derived in a matrix form by considering coupled relationships of the power flow at the interface of given domains. The proposed method can successfully obtain the analytical solutions for the problems of coupled cubes and the small-scale reverberant chamber. Then the experiment is carried out to obtain STL(sound transmission loss) by using small-scale reverberant chamber and the results are compared with analysis results.

Study on Coupled Resonance Frequencies and Acoustic Responses in a 3-D Acoustic Cavity with the Air-gap for Safer Driving Condition

  • Kang, Sang-Wook
    • International Journal of Safety
    • /
    • 제5권1호
    • /
    • pp.17-23
    • /
    • 2006
  • An investigation was carried out to determine the effect of the thickness of the air-gap installed between the roof metal sheet and the headliner on booming noise in passenger cars. In addition, a way of offering quieter driving condition to drivers and passengers was studied. It was found that a very thin air-gap corresponding to approximately 3/100 of the height of the passenger compartment causes noticeable change in the coupled resonance frequencies and acoustic responses. Furthermore, a guideline is proposed for determining an optimal air-gap thickness during design stage of the air-gap beneath the roof metal sheet for reducing booming noise.

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

가진 하부시스템의 유한 모빌리티를 고려한 연성 보의 SEA 적용 (SEA of Coupled Beams considering Finite Mobility of Excited Subsystem)

  • 임종윤;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.79-83
    • /
    • 2005
  • SEA is a useful tool to predict noise and vibration response in high frequency region but has a weak point not to be able to express modal behavior in low frequency region. For a structure with middle subsystem having relatively higher modal density than excited subsystem and receiving subsystem, we studied the possibility that the modal behavior of receiving subsystem can express by considering finite mobility of excited subsystem. For a simply three-coupled beams which is chosen for feasibility study, the response of receiving beam was investigated with varying the length & area moment of inertia of middle beam. In case that the middle beam has relatively higher modal density than exciting beam, the application to finite mobility of excited beam led to express modal behavior of receiving beam relatively well.

  • PDF

이동질량-탄성지지무한보의 연성진동해석 (차륜.레일간의 접촉력 변동의 해석모델) (Coupled Vibration of Moving Mass-Elastically Supported Beam Considering the Contact Stiffness (An Ananlytical Model of the Contact Force Fluctuation between Wheel and Rail))

  • 류윤선;;;;김사수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.197-200
    • /
    • 1995
  • Corrugation of railway track can be caused by the various dynamic behavior of travelling wheels and track. In this paper, the coupled vibrations of travelling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibrations, the track supported by the sleepers and the traveling wheel are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered betwen the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile of the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-moving mass system. It may be thought to a development of railway corrugation.

  • PDF