• Title/Summary/Keyword: Coupled Effects

Search Result 1,452, Processing Time 0.03 seconds

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Coupled Thermal-Mechanical Analysis of Rubber Oil Seals (열응력을 고려한 고무 오일시일 해석)

  • 김청균;전인기
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.39-42
    • /
    • 1994
  • This paper deals with the distributions of the contact stress in oil seals. The distributions of the contact stress due to the temperature effects are analyzed for various values of the interference for a nitrile rubber seal. The calculated FEM results show that the relative maximum stresses occur at the contacting area against the shaft, the flex zone, and the contacting area of the garter spring grooves. Using the coupled temperature-stress FEM a nalysis, the contact force of a radial lip seal with and without the garter spring are studied as a function of shaft diameter. The calculated results of mechanical analysis show good correspondence with those of the coupled thermal-mechanical analysis method except small values of the interference. And the calculated results indicated that the thermal stresses only have a very minor influence on the deformed shape of the lip seal as the interference increases. But the coupled temperature-stress analysis will be very useful tool to predict the contact behaviors of rubber lip seals for small values of the interference.

Analytical Eye-Diagram Determination for the Efficient and Accurate Signal Integrity Verification of Coupled Interconnect Lines

  • Lee, Minji;Kim, Dongchul;Eo, Yungseon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.594-607
    • /
    • 2013
  • A new efficient analytical eye-diagram determination technique for coupled interconnect lines is presented. Two coupled lines are decoupled into isolated eigen modes; bit blocks for coupled lines, which are defined as a block of consecutive bits, are then represented with decoupled modes. The crosstalk effects within the bit blocks are taken into account. Thereby, the crucial input bit patterns for the worst case eye-diagram determination are modeled mathematically, including inter-symbol interference (ISI). The proposed technique shows excellent agreement with the SPICE-based simulation. Furthermore, it is very computation-time-efficient in the order of magnitude, compared with the SPICE simulation, which requires numerous pseudo-random bit sequence (PRBS) input signals.

Vibration Analysis for a Coupled MEMS-Gyroscope Design (연성된 MEMS 자이로스코프 모델의 설계를 위한 진동특성 해석)

  • 방선호;신상하;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.946-969
    • /
    • 2003
  • Vibration analysis for a coupled MEMS gyroscope design is presented in this paper. MEMS gyroscopes have shown that slight mistuning in fabricated process often leads to significant difference of vibration characteristics between expected and real designs. The difference frequently affects the MEMS gyroscope design in a negative way. As long as the coupling between excited and sensed motions exists, such difference occurs inevitably. In this paper, dimensionless parameters that govern the vibration characteristics of coupled MEMS gyroscope are identified and the effects of the parameters on the vibration characteristics are investigated for the design of the MEMS gyroscope.

  • PDF

Vibration Analysis for a Coupled MEMS-Gyroscope Design (연성된 MEMS 자이로스코프 모델의 설계를 위한 진동 해석)

  • 방선호;신상하;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.655-660
    • /
    • 2004
  • Vibration analysis for a coupled MEMS gyroscope design is presented in this paper. Slight mistuning in fabricated MEMS gyroscopes often leads to significant difference of vibration characteristics between expected and real designs. This difference frequently results in a negative effect to the MEMS gyroscope performance. As long as the coupling between excited and sensed motions exists, such difference inevitably occurs. In this paper, dimensionless parameters that govern the vibration characteristics of coupled MEMS gyroscope are identified and the effects of the parameters on the vibration characteristics are investigated.

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF