Effects of Private Insurance on Medical Expenditure (민간의료보험 가입이 의료이용에 미치는 영향)
-
- KDI Journal of Economic Policy
- /
- v.30 no.2
- /
- pp.99-128
- /
- 2008
Nearly all Koreans are insured through National Health Insurance(NHI). While NHI coverage is nearly universal, it is not complete. Coverage is largely limited to minimal level of hospital and physician expenses, and copayments are required in each case. As a result, Korea's public insurance system covers roughly 50% of overall individual health expenditures, and the remaining 50% consists of copayments for basic services, spending on services that are either not covered or poorly covered by the public system. In response to these gaps in the public system, 64% of the Korean population has supplemental private health insurance. Expansion of private health insurance raises negative externality issue. Like public financing schemes in other countries, the Korean system imposes cost-sharing on patients as a strategy for controlling utilization. Because most insurance policies reimburse patients for their out-of-pocket payments, supplemental insurance is likely to negate the impact of the policy, raising both total and public sector health spending. So far, most empirical analysis of supplemental health insurance to date has focused on the US Medigap programme. It is found that those with supplements apparently consume more health care. Two reasons for higher health care consumption by those with supplements suggest themselves. One is the moral hazard effect: by eliminating copayments and deductibles, supplements reduce the marginal price of care and induce additional consumption. The other explanation is that supplements are purchased by those who anticipate high health expenditures - adverse effect. The main issue addressed has been the separation of the moral hazard effect from the adverse selection one. The general conclusion is that the evidence on adverse selection based on observable variables is mixed. This article investigates the extent to which private supplementary insurance affect use of health care services by public health insurance enrollees, using Korean administrative data and private supplements related data collected through all relevant private insurance companies. I applied a multivariate two-part model to analyze the effects of various types of supplements on the likelihood and level of public health insurance spending and estimated marginal effects of supplements. Separate models were estimated for inpatients and outpatients in public insurance spending. The first part of the model estimated the likelihood of positive spending using probit regression, and the second part estimated the log of spending for those with positive spending. Use of a detailed information of individuals' public health insurance from administration data and of private insurance status from insurance companies made it possible to control for health status, the types of supplemental insurance owned by theses individuals, and other factors that explain spending variations across supplemental insurance categories in isolating the effects of supplemental insurance. Data from 2004 to 2006 were used, and this study found that private insurance increased the probability of a physician visit by less than 1 percent and a hospital admission by about 1 percent. However, supplemental insurance was not found to be associated with a bigger health care service utilization. Two-part models of health care utilization and expenditures showed that those without supplemental insurance had higher inpatient and outpatient expenditures than those with supplements, even after controlling for observable differences.
Since 2008, China's shipping industry has been in a slump, with shipbuilding orders falling sharply, and high-growth excess capacity has become increasingly apparent, leaving many firms with sharply reduced orders at risk of bankruptcy and shutdown. To ensure the development of the shipbuilding industry and enhance the international competitiveness of the shipbuilding industry, it is necessary to analyze the present situation of the shipbuilding industry and the financial situation of the shipbuilding enterprises. And analyzing the problems faced by enterprises from the perspective of capital structure is very meaningful to the shipbuilders with high capital operation. We are trying to analyze the determinants of capital structure of China's shipbuilding listed companies. 30 listed Chinese shipbuilding and listed companies have been designated as sample companies that can obtain financial statements for 13 consecutive years. They also divided 30 sample companies into shipbuilding, shipbuilding-related manufacturing, and shipbuilding-related transportation. Dependent variable is the debt level of the year, independent variable includes the debt level of the previous year, fixed asset ratio, profitability ratio, depreciation cost ratio and asset size. The regression model of the panel used to analyze determinants is capital structure. The results of the empirical analysis are as follows. First, a fixed-effect model for the entire entity showed that the debt-to-equity ratio and the size of the asset in the previous period had a positive effect on the debt-to-equity ratio in the current period. Second, the impact of the profitability ratio on the debt level in the prior term also supports the capital procurement ranking theory rather than the static counter-conflict theory. Third, it was shown that the ratio of the depreciation of the prior term, which replaces the non-liability tax effect, affects the debt-to-equity ratio in the current period.
Recently strategic alliance between business firms has become prevalent to overcome increasing competitive threats and to supplement resource limitation of individual firms. As one of allianced sales promotion activities, a new type of discount program, so called "Alliance Card Discount", is introduced with the partnership of credit cards and loyalty cards. The program mainly pursues short-term sales growth by larger discount scheme while spends less through cost share among alliance partners. Thus this program can be regarded as cost efficient discount promotion. But because there is no solid evidence that it can really deliver profitable sales growth, an empirical study for its effects on sales and profit should be conducted. This study has two basic research questions concerning the effects of allianced discount program ; 1)the possibility of sales increase 2) the profitability of the discount driven sales. In F&B industry, sales increase mainly comes from increased guest count. Especially in family restaurants, to increase the number of guests we need to enlarge the size of visitor group (number of visitors for one group) because customers visit by group in a special occasion. And because they pay the bill by group(table), the increase of sales per table is a key measure for sales improvement. The past researches for price & discount sensitivity and reference discount rate explain that price sensitive consumers have narrow reference discount zone and make rational purchase decision. Differently from all time discount scheme of regular sales promotions, the alliance card discount program only provides the right to get discount like discount coupon. And because it is usually once a month opportunity given by the past month usage level, customers tend to perceive alliance card discount as a rare chance to get. So that we can expect customers try to maximize the discount effect when they use the limited discount opportunity. Considering group visiting practice and low visit frequency of family restaurants, the way to maximize discount effect should be the increase the size of visit group. And their sensitivity to discount and rational consumption behavior defer the additional spending for ordering high price menu, even though they get considerable amount of savings from the discount. From the analysis of sales data paid by alliance discount cards for four months, we found the below. 1) The relation between discount rate and number of guest per table is positive : 25% discount results one additional guest 2) The relation between discount rate and the spending per guest is negative. 3) However, total profit amount per table is increased when discount rate is increased. 4) Reward point accumulation & redemption did not show any significant relationship with the increase of number of guests. These results suggest that the allianced discount program substantially contributes to sales increase and profit improvement by increasing the number of guests per table. Though the spending per guest is decreased by discount rate increase, the total amount of profit per table is improved. It seems the incremental profit by increased guest count offsets the profit decrease. Additional intriguing finding is the point reward system does not have any significant impact on the increase of number of guest, even if the point accumulation & redemption of loyalty program are usually regarded as another saving offers by customers. In sum, because it is proved that allianced discount program with credit cards and loyalty cards is effective to both sales drive and profit increase, the alliance card program could be recommended as strategically buyable program.
Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.
Agriculture is a primary industry that influenced by the weather or meterological factors more than other industry. Global warming and worldwide climate changes, and unusual weather phenomena are fatal in agricultural industry and human life. Therefore, many previous studies have been made to find the relationship between weather and the productivity of agriculture. Meterological factors also influence on the distribution of agricultural product. For example, price of agricultural product is determined in the market, and also influenced by the weather of the market. However, there is only a few study was made to find this link. The objective of this study is to investigate the effects of meterological factors on the distribution of agricultural products, focusing on the distribution of chinese cabbages. Chinese cabbage is a main ingredient of Kimchi, and basic essential vegetable in Korean dinner table. However, the production of chinese cabbages is influenced by weather and very fluctuating so that the variation of its price is so unstable. Therefore, both consumers and farmers do not feel comfortable at the unstable price of chinese cabbages. In this study, we analyze the real transaction data of chinese cabbage in wholesale markets and meterological factors depending on the variety and geography. We collect and analyze data of meterological factors such as temperatures, humidity, cloudiness, rainfall, snowfall, wind speed, insolation, sunshine duration in producing and consuming region of chinese cabbages. The result of this study shows that the meterological factors such as temperature and humidity significantly influence on the volume and price of chinese cabbage transaction in wholesale market. Especially, the weather of consuming region has greater correlation effects on transaction than that of producing region in all types of chinese cabbages. Among the whole agricultural lifecycle of chinese cabbages, 'seeding - harvest - shipment - wholesale', meterological factors such as temperature and rainfall in shipment and wholesale period are significantly correlated with transaction volume and price of crops. Based on the result of correlation analysis, we make a regression analysis to verify the meterological factors' effects on the volume and price of chines cabbage transaction in wholesale market. The results of stepwise regression analysis are shown in