• Title/Summary/Keyword: Corynebacterium

Search Result 298, Processing Time 0.032 seconds

호알칼리성 Corynebacterium sp. YT-14를 이용한 감량가공폐수와 종합염색폐수 중의 terephthalic acid 제거

  • Lee, Hyeon-Uk;Im, Dong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.359-360
    • /
    • 2002
  • A bacterial strain able to degrade terephthalic acid (TPA) was isolated and identified to belong to the Corynebacterium sp. It was named Corynebacterium sp. YT-14. When stirred loop bioreactor was used in a batch type system for removing terephthalic acid from weight loss treatment wastewater and complex dyeing process wastwater, the removal efficiency of terephthalic acid was 85.4% after 7 days of treatment of the weight loss treatment wastewater, while no residual terephthalic acid was detected after 3 days of treatment of the complex dyeing process wastewater

  • PDF

Molecular Cloning and Expression of Candida antarctica lipase B in Corynebacterium genus

  • Gonzalez, Tamara;M'Barek, Hasna Nait;Gomaa, Ahmed E.;Hajjaj, Hassan;Zhen, Chen;Dehua, Liu
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.546-554
    • /
    • 2019
  • This study, for the first time, reports the functional expression of lipase B derived from the yeast Candida antarctica (CALB) in Corynebacterium strain using the Escherichia coli plasmid PK18. The CALB gene fragment encoding a 317-amino-acid protein was successfully obtained from the total RNA of C. antarctica. CALB was readily produced in the Corynebacterium strain without the use of induction methods described in previous studies. This demonstrated the extracellular production of CALB in the Corynebacterium strain. CALB produced in the Corynebacterium MB001 strain transformed with pEC-CALB recombinant plasmid exhibited maximum extracellular enzymatic activity and high substrate affinity. The optimal pH and temperature for the hydrolysis of 4-nitrophenyl laurate by CALB were 9.0 and 40℃, respectively. The enzyme was stable at pH 10.7 in the glycine-KOH buffer and functioned as an alkaline lipase. The CALB activity was inhibited in the presence of high concentration of Mg2+, which indicated that CALB is not a metalloenzyme. These properties are key for the industrial application of the enzyme.

Synthesis of L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) by Thermostable L-Threonine Aldolase Expressed in Corynebacterium glutamicum R (Corynebacterium glutamicum에서 발현된 L-Threonine Aldolase를 이용한 파킨슨병 치료제 L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS)의 합성)

  • Baik, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • In order to examine efficient L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) synthesis process using whole cell biocatalyst, a thermostable L-threonine aldolase (L-TA), which cloned from Streptomyces coelicolor A3(2) and improved for stability, was expressed in a Corynebacterium glutamicum R strain. The constructed Corynebacterium expression vector, pCG-H44(1) successfully expressed L-TA in C. glutamicum R strain, but showed very low expression level. In order to improve the expression level, the expression vector named pCG-H44(2) was reconstructed by eliminating 1 nucleotide between SD sequence and start codon of L-TA. The pCG-H44(2) vector plasmid was able to overexpress L-TA approximately 3.2 times higher than pCG-H44(1) in C. glutamicum R strain (CGH-2). When the whole cell of CGH-2 was examined in a repeated batch system, L-threo-DOPS was successfully synthesized with a yield of 4.0 mg/ml and maintain synthesis rate constantly after 30 repeated batch reactions for 130 h.

Development of L-Lysine Producing Strains by Intergeneric Protoplast Fusion of Brevibacterium flavum and Corynebacterium glutamicum (Brevibacterium flavum과 Corynebacterium glutamicum의 이속간 원형질체 융합에 의한 L-라이신 생산균주 개발)

  • Kyung, Ki-Cheon;Lim, Bun-Sam;Lee, Se-Yong;Chun, Moon-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.279-283
    • /
    • 1985
  • As a method of breeding L-lysine producing strains, the intergeneric protoplast fusion between Brevibacterium flavum and Corynebacterium glutamicum was performed. As a results, Brevibacterium flavum ATCC 21528 R showed 99% of protoplast formation and 10% of regeneration frequencies when treated with 400$\mu\textrm{g}$/$m\ell$ of lysozyme for 12hrs. In Corynebacterium glutamicum ATCC 21514 S, 99% and 12% were obtained by treatment of 300$\mu\textrm{g}$/$m\ell$ lysozyme for 12 hrs. In intergeneric protoplast fusion between Brevibacterium flavum ATCC 21528 R and Corynebacterium glutamicum ATCC 21831 S, 1.0$\times$10$^{-6}$ of recombinant frequency per regenerable cells was observed by use of PEG 6000, 30%(w/v). Among the strains obtained KR$_{43}$ strain showed 12% higher productivity of L-lysine than the parental cell. Then, the activity of aspartokinase of KR$_{43}$ was about 13% higher than the parental cell.

  • PDF

Gene Amplification of aceA and aceB in Lysine-producing Corynebacterium glutamicum ssp. lactofermentum ATCC21799

  • Kim, Hyung-Joon;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.287-292
    • /
    • 1997
  • The role of glyoxylate bypass in lysine production by Corynebacterium glutamicum ssp. lactofermentum ATCC21799 was analyzed by using cloned aceA and aceB genes which encode enzymes catalyzing the bypass. Introduction of a plasmid carrying aceA and aceB to the strain increased enzyme activities of the bypass to approximately 5 fold on acetate minimal medium. The strain with amplified glyoxylate bypass excreted 25% more lysine to the growth medium than the parental strain, apparently due to the increased availability of intracellular oxaloacetate. The final cell yield was lower in the strain with amplified glyoxylate bypass. These changes were specific to the lysine-producing C. glutamicum ssp. lactofermentum ATCC21799, since the lysine-nonproducing wild type Corynebacterium glutamicum strain grew faster and achieved higher cell yield when the glyoxylate bypass was amplified. These findings suggest that the lysine producing C. glutamicum ssp. lactofermentum ATCC21799 has the ability to efficiently channel oxaloacetate, the TCA cycle intermediate, to the lysine biosynthesis pathway whereas lysine-nonproducing strains do not. Our results show that amplification of the glyoxylate bypass efficiently increases the intracellular oxaloacetate in lysine producing Corynebacterium species and thus results in increased lysine production.

  • PDF

Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum (Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.552-555
    • /
    • 1989
  • A 150-fold purified preparation of NADPH-specific glutamate dehydrogenase of Corynebacterium glutamicum (1) was used for the determination of kinetic parameters of the substrates, NADPH, NH$_4$Cl, and $\alpha$-ketoglutarate in the direction of glutamate synthesis. The kinetic constants determined from this study suggest a biosynthetic role for the enzyme, Based on the analysis of the result derived from initial velocity, the reaction mechanism was postulated to be ordered addition with NADPH as a first substrate to bind in the forward direction. Of the several metabolites tested for a possible function in the regulation of glutamate dehydrogenase activity, only malate and citrate were appeared to have an appreciable influence on the enzyme, Potassium chloride showed to be the most effective for the enzyme activity.

  • PDF

Genetic Regulation of Corynebacterium glutamicum Metabolism

  • Wendisch Volker F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.999-1009
    • /
    • 2006
  • Physiological, biochemical and genetic studies of Corynebacterium glutamicum, a workhorse of white biotechnology used for amino acid production, led to a waste knowledge mainly about amino acid biosynthetic pathways and the central carbon metabolism of this bacterium. Spurred by the availability of the genome sequence and of genome-based experimental methods such as DNA microarray analysis, research on genetic regulation came into focus. Recent progress on mechanisms of genetic regulation of the carbon, nitrogen, sulfur and phosphorus metabolism in C. glutamicum will be discussed.

Occurence Abscesses Caused Corynebacterium Pyogenes in Pigs (돼지에 있어서 Corynebacterium pyogenes의 집단감염보고)

  • Baek Byeong Kirl;Choi In Hyuk;Kim Pyung Gil;Rhee Jae Ku
    • Journal of the korean veterinary medical association
    • /
    • v.21 no.1
    • /
    • pp.48-52
    • /
    • 1985
  • Mass outbreak of abscesses of pigs ($28.2\%$) which were observed in a swinery farm in Kimjae, Jeonbug on april 1984, was investigated the etiology and tried to cure the abscesses. The results obtained were as follow; 1. Corynebacterium pyogene

  • PDF

Metabolic control of aspartate-derived amono acid production in Corynebacterium alutamicum

  • Lee, Heung-Shick
    • The Microorganisms and Industry
    • /
    • v.20 no.2
    • /
    • pp.2-8
    • /
    • 1994
  • In this report, I will briefly explore the recent progresses in the metabolic engineering of Corynebacterium and related species, especially Corynebacterium glutamicum. I will focus mostly on the biosynthesis of aspartate family of amino acids, such as lysine and threonine. The information on the biosynthesis of other members of aspartate family of amino acids, such as methionine and isoleucine, is still very limited. Therefore, they will not be discussed here.

  • PDF

Studies on the Bacterial Production of L-Glutamate from Acetate Part I. Screening and Identification of L-Glutamate Producing Bacteria. (초산을 이용한 글루타민산의 발효생산에 관한 연구 제 1보 글루타민산 생산균주의 분리 및 동정)

  • 하덕모;노완섭
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 1974
  • In the cource of the studies on L-glutamic acid production from acetic acid, 383 strains capable of assimilating acetate as sole source of carbon were isolated from 279 kinds of soil sample. Out of them, 5 strains which produced relatively larger amount of L-glutamate from acetate were selected and named Brevibacterium flavum nov. sp. D1005B, Corynebacterium glutamicum nov. sp. D1025A, Brevib. flavum nov. sp. D2209B, Coryneb. acetoacidophilum nov. sp. D2212B and Coryneb. acetoacidophilum nov. sp. D2349A respectively.

  • PDF