• 제목/요약/키워드: Cortical stimulation

검색결과 112건 처리시간 0.021초

The Ongoing Effect of Transcranial Direct Current Stimulation on both the Hemispheres: Single Case fMRI Study

  • Kwon, Jung-Won;Son, Sung-Min;Kim, Chung-Sun;Cho, In-Sul
    • The Journal of Korean Physical Therapy
    • /
    • 제23권6호
    • /
    • pp.49-53
    • /
    • 2011
  • Purpose: The purpose of this study is to investigate whether dual-hemisphere transcranial direct current stimulation (tDCS) could induce more cortical activity, compared to single-hemisphere, using functional MRI (fMRI). Methods: One right-handed healthy subject was recruited. Three phases of dual-hemisphere tDCS (i.e. anodal tDCS over the left-dominant primary sensoriomotor cortex (SM1) and cathodal tDCS over the right-non dominant SM(1) were consecutively delivered on to a subject, during fMRI scanning. The voxel count and the intensity index in the averaged cortical map were analyzed among the three tDCS phases. Results: Our result showed that cortical activation was observed on all the three phases of the dual-hemisphere tDCS. Voxel count and intensity index were as following; 912 and 4.07 in the first phase, 1102 and 3.90 in the second phase, 1031 and 3.80 in the third phase. Conclusion: This study demonstrated that application of the dual-hemisphere tDCS could induce cortical activity and maintain to recruit cortical neurons. Our findings suggested that application of dual-hemisphere tDCS could produce efficiency of the ongoing tDCS effect to facilitate cortical excitability.

정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구 (Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies)

  • 권용현;권중원;박상영;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

경두개 직류전류 자극이 대뇌피질의 뇌 활성도에 미치는 영향 (Cortical Activation in the Human Brain induced by Transcranial Direct Current Stimulation)

  • 권용현;김중선;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제21권4호
    • /
    • pp.73-79
    • /
    • 2009
  • Purpose: Recently, neurostimulation studies involving manipulation of cortical excitability of the human brain have been increasingly attempted. We investigated whether transcranial direct current stimulation (tDCS) applied to the underlying cerebral cortex, directly induces cortical activation during fMRI scanning. Methods: We recently recruited five healthy subjects without a neurological or psychiatric history and who were right-handed, as verified by the modified Edinburg Handedness Inventory. fMRI was done while constant anodal tDCS was delivered to the underlying SM1 area?? immediately after the pre-stimulation for eighteen minutes. Results: Group analysis yielded an averaged map that showed that the SM1 area and the superior parietal cortex in the ipsilateral hemisphere were activated. The voxel size and peak intensity were, respectively, 82 and 5.22 in the SM1, and 85 and 5.77 in the superior parietal cortex. Conclusion: Cortical activation can be induced by constant anodal tDCS of the underlying motor cortex. This suggests that tDCS may be an effective therapeutic device for enhancing? physical motor function by modulating neural excitability of the motor cortex.

  • PDF

수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로 (A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders)

  • 김신혜;이수지;임수미;윤수정
    • 수면정신생리
    • /
    • 제28권2호
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.

뚜렛 증후군에서의 경두개 자기자극술 (Transcranial Magnetic Stimulation in Gilles de la Tourette Syndrome)

  • 이문수
    • 정신신체의학
    • /
    • 제18권1호
    • /
    • pp.3-10
    • /
    • 2010
  • 뚜렛 증후군은 주로 아동기에 발생하는 만성적인 운동 및 음성 틱을 주소로 하는 질환이다. 기저핵-시상-피질 회로에서의 이상이 비자발성 틱의 병태생리에 중요한 역할을 하는 것으로 생각된다. 뚜렛 증후군은 흔히 주의력 결핍 과잉행동장애나 강박장애와 병존한다. 경두개 자기자극술은 연구용으로 많이 사용되는 신경생리학적 기법이다. 이 기법이 피질의 활성을 변화시킬 수 있다는 증거들이 많아서, 반복적 경두개 자기자극술은 피질의 활성도를 바꾸어서 결과적으로 내재한 서로 연결된 피질-피질하 회로에 영향을 주기 위하여 치료적 목적으로도 사용된다. 우리는 본 논문에서 경두개자극술의 여러 신경생리학적 변인들과 임상적 응용에 관하여 기존의 연구보고들을 고찰하여 보고자 한다.

  • PDF

양극 경두개직류자극에 의한 운동관련피질전위의 변화 (Change of Cerebral Motor Area Activity by Anodal Transcranial Direct Current Stimulation (tDCS))

  • 임영은;김수현;양대중;김태열
    • The Journal of Korean Physical Therapy
    • /
    • 제21권4호
    • /
    • pp.65-71
    • /
    • 2009
  • Purpose: Transcranial direct current stimulation (tDCS) is a useful method for modulating the brain activity. This study compared the effect of continuous and interrupted tDCS using the change in the movement related cortical potential. Methods: Thirty healthy participants (male: 18 and female: 12) were assigned randomly to three groups; sham tDCS, continuous tDCS, which the current continuously flowed for 10 minutes, and interrupted tDCS, which the interrupted current flowed for 10 minutes (repetition: 4sec stimulation and 5sec rest) at an intensity of 1mA with anodal polarity. The effect of tDCS on the right primary motor area was measured from the movement related cortical potential (MRCP) before and after the experiment. MRCP consisted of the bereitshaftspotential (BP) and negative slope potential (NS) at Cz and C4. Results: Continuous and interrupted tDCS showed a significant difference in the changes in the BP, NS at Cz and C4 compared to the sham tDCS. However, there was no significant difference between the continuous tDCS and interrupted tDCS. Conclusion: The change in cortical activity by continuous and interrupted tDCS results from an improvement in the MRCP. An interrupted tDCS may be a safe and useful modality for stimulating the cortical region.

  • PDF

촉각 자극과 두점식별 자극에 따른 뇌활성도 분석: fMRI 사례 연구 (Comparison of Cortical Activation between Tactile Stimulation and Two-point Discrimination: An fMRI Case Study)

  • 박지원;김중선
    • The Journal of Korean Physical Therapy
    • /
    • 제22권4호
    • /
    • pp.97-101
    • /
    • 2010
  • Purpose: Sensory input is very important for proper performance of human. Two-point discrimination is the most widely used tactile sensory test. The purpose of this study was to find the changes in cortical activation patterns between tactile stimulation and two-point discrimination. Methods: Two healthy subjects participated in our study. fMRI scanning was done during 4 repeated blocks of tactile stimulation and two point discrimination of the right index finger tip. In one block, stimuli were repeated 10 times every three seconds. To determine the changes of cortical neurons during sensory input, intensity index was analyzed. Results: When tactile stimulation of the right index finger tip was completed, only contralateral primary somatosensory area was activated. In contrast, during two-point discrimination, both the primary somatosensory area and ipsilateral supplementary sensory area were activated. Conclusion: During two point discrimination, both primary somatosensory area and ipsilateral supplementary sensory area were activated. Therefore, two-point discrimination is required more complex and conscious activity than tactile stimulation.

경두개 자기 자극이 인지 기능에 미치는 영향 (Effects of Transcranial Magnetic Stimulation on Cognitive Function)

  • 이상민;채정호
    • 생물정신의학
    • /
    • 제23권3호
    • /
    • pp.89-101
    • /
    • 2016
  • Transcranial magnetic stimulation (TMS) is a safe, noninvasive and useful technique for exploring brain function. Especially, for the study of cognition, the technique can modulate a cognitive performance if the targeted area is engaged, because TMS has an effect on cortical network. The effect of TMS can vary depending on the frequency, intensity, and timing of stimulation. In this paper, we review the studies with TMS targeting various regions for evaluation of cognitive function. Cognitive functions, such as attention, working memory, semantic decision, discrimination and social cognition can be improved or deteriorated according to TMS stimulation protocols. Furthermore, potential therapeutic applications of TMS, including therapy in a variety of illness and research into cortical localization, are discussed.

효과적인 대뇌 직접피질자극 검사 및 피질하자극 검사의 술기에 관한 기술적 고찰 (Technical Considerations of Effective Direct Cortical and Subcortical Stimulation)

  • 임성혁;장민환
    • 대한임상검사과학회지
    • /
    • 제54권2호
    • /
    • pp.157-162
    • /
    • 2022
  • 본 술기의 목적은 운동피질 주변에 발생한 뇌종양 환자의 수술에서 TceMEP로 인해 발생하는 위양성을 방지하고 수술 중 운동영역의 정확한 매핑과 피질척수로 보존하기 위함이다. 또한 검사과정에서 발생하는 시행착오를 줄이고 검사시간을 최소화하여 검사결과에 대한 빠른 피드백으로 수술하는 의사에게 정확한 정보를 전달함에 있다. 본 술기의 가장 중요한 요소는 첫번째로 일정 세기의 자극역치로 검사해야 하는 것과 두번째로는 일정 수준의 마취농도를 적정 수준으로 유지하는 것이 수술 중 발생하는 위양성을 막는 기본적이 요소이다. 세번째로는 수술하는 반대쪽 부위에 다중 채널을 이용한 기록전극의 설치로 최대한 많은 근육에서 TceMEP파형과 집접피질자극 및 직접피질하 자극에 대한 반응을 측정하는 것이다. 이런 조건들이 수술이 진행되는 동안 원활하게 유지된다면 검사에서 오는 위양성이 아닌 그 밖의 요인들에서 발생할 수 있는 원인들을 예측할 수 있다.

수술중 체성감각 유발전위 및 대뇌피질 자극을 이용한 일차 운동피질영역과 일차 감각피질영역의 확인 - 증례보고 - (Identification of M-1, S-1 Cortex Using Combined Intraoperative SEP and Cortical Stimulation - A Case Report -)

  • 이제언;손병철;김문찬;강준기
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권7호
    • /
    • pp.954-958
    • /
    • 2000
  • In the removal of small subcortical lesion in the eloquent area like sensory-motor cortex, the prevention of neurologic deficit is important. We present our technique of identification of M-1, S-1 cortex in a case of subcortical granuloma located in sensorymotor cortex. To accurately localize mass, stereotactic craniotomy was planned. At the beginning of procedure, functional MRI of motor cortex was done with stereotactic headframe in place. Next, the stereotactic craniotomy about 4 cm was done under propofol anesthesia for cortical mapping. After reflection of dura, central sulcus was identified with phase-reversal response of intraoperative SEP(somatosensory evoked potential) of contralateral median nerve. Then the patient was awakened, and direct cortical stimulation was done. We observed the muscle contractions of elbow, hand and fingers and the paresthesia over forearm, hand, fingers on the M-1 and S-1 cortex. Through cortical mapping and stereotactic guidance, we concluded that the mass lie immediately posterior to central sulcus, then the mass was carefully removed through small transsulcal approach, opening about 1 cm of rolandic sulcus.

  • PDF