• Title/Summary/Keyword: Cortical activity

Search Result 238, Processing Time 0.038 seconds

Gossypin Protects Primary Cultured Rat Cortical Cells from Oxidative Stress- and $\beta$-Amyloid-Induced Toxicity

  • Yoon, Injae;Lee, Kwang-Heun;Choi, Jungsook
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.454-459
    • /
    • 2004
  • The present study investigated the effects of gossypin, 3,3',4',5,7,8-hexahydroxyflavone 8-glucoside, on the toxicity induced by oxidative stress or $\beta$-amyloid ($A_{\beta}$) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthinelxanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by $A_{{\beta}(25-35)}$. Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by $Fe^{2+}$ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1 ,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and $A_{\beta}$-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

Effects of Sagunja-Tang on cytotoxicity and lipid peroxidation in rat renal cortical slices (사군자탕(四君子湯) 및 그 구성약물(構成藥物)이 백서(白鼠) 신피질(腎皮質) 절편(切片)의 세포손상(細胞損傷)과 지질과산화(脂質過酸化)에 미치는 영향(影響))

  • Cho, Su-In;Kim, Gyung-Chul;Lee, Yong-Tae
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.122-131
    • /
    • 1999
  • This study was carried out to investigate whether water extract of Sagunja-Tang and its composing herbs have the inhibitory effects on cytotoxicity and lipid peroxidation induced by oxidant in rat renal cortical slices. Cytotoxicity was estimated by measuring lactate dehydrogenase (LDH) activity and lipid peroxidation was examined by measuring malondialdehyde (MDA). a product of lipid peroxidation. When rat renal cortical slices were treated with tert-butylhydroperoxicle (t-BHP) of 1 mM and water decocted herbs. LDH release from the slices was inhibited in dose dependent manner at low concentrations of herbs. It shows that herbs can reduce cytotoxicity, but overdose of herbs can be toxic to the slices. And MDA measurements show each herb has its own activities of preventing cytotoxicity from oxidants. So further studies should be followed to make clear the mechanisms of anti-oxidative effects of herbs.

  • PDF

The Effect of Docosahexaenoic Acid on Brain Function and Acetylcholine Level in Cerebral Cortex of Electroconvulsive Shock Induced Mice (Docosahexaenoic acid가 전기충격성 뇌장애 마우스의 기억력 및 Acetylcholine량 변화에 미치는 영향)

  • 김문정;신정희;윤재순
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.231-242
    • /
    • 1995
  • Electroconvulsive shock (ECS) increases the activity of acetylchohnesterase and decreases in brain acetylcholine levels. A large amount of free fatty acids accumulated in the brain tissue affects cerebral blood flow, brain edema and inflammation and results in brain injury. The present study examined the effect of docosahexaenoic acid (DHA) and D,L-pyroglutamic acid (D,L-PCA) on the learning and memory deficit using the passive avoidance failure technique and on the change of acetylcholine and choline level in the cerebral cortex of ECS-induced mice. The application of ECS (25mA, 0.5sec) induced a significant decrease in memory function for 30 min. ECS-induced a significant decrease in cortical acetylcholine and choline levels 1 min following the ECS application, which were almost recovered to ECS control level after 30 min. DHA (20 mg/kg, i.p.). administered 24 hr before shock. prevented the ECS-induced passive avoidance failure and the decrease of acetylcholine level 1 min following the ECS application. DHA failed to elicit a change in cortical choline level. DHA did not affect memory function and the cortical Ach and choline level of normal mice. The administration of D,L-PCA (500 mg/kg, i.p.) increased the effect of DHA on memory function and the change of cortical acetylcholine level of ECS induced mice. These results suggest that DHA treatment may be contributed to the prevention against memory deficit, and to the activation of cholinergic system in the ECS induced mice.

  • PDF

Optical imaging of epileptic activity and epilepsy treatments in neocortex

  • Suh, Min-Ah
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.427-428
    • /
    • 2009
  • Optical imaging offers excellent spatio-temporal sensitivity that is unparalleled by any other perfusion based imaging techniques. We used in vivo optical recording of intrinsic signals (ORIS) to map neurovascular hemodynamics of perfusion, oximetry and membrane potential during epileptic events in rat and mouse neocortex. Studies of hemodynamic changes with ORIS alone were also performed in human. Laboratory studies in rodent epilepsy models have demonstrated a persistent increase in deoxygenated hemoglobin (Hbr) and a decrease in tissue oxygenation during interictal spikes and ictal events. This "epileptic dip", like the "initial dip" recorded during normal sensory processing, implies that the enormous rise in cerebral blood flow (CBF) is inadequate to meet the increased metabolic demands associated with synchronized epileptic activity. These findings are critically important to the interpretation of the perfusion-based imaging studies, such as fMRI. In addition, we visualized the effect of direct cortical electrical stimulation, an alterative epilepsy treatment. The optical data following direct cortical electrical stimulation showed that hemodynamic signals are sensitive to different electrical stimulation parameters. Furthermore, our recent data demonstrated that the application of unilateral electrical stimulation is able to elicit bilateral hemodynamic responses in rat neocortex.

  • PDF

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.

A Review of the Plasticity and Constraint Induced Movement Therapy : Children With Spastic Hemiplegic Cerebral Palsy (신경가소성 원리를 이용한 강제유도운동치료에 대한 고찰: 경직성 편마비형 뇌성마비 아동을 대상으로)

  • Cho, Sang-Yoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.2 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • Constraint-Induced Movement Therapy(CIMT) is considered as one of the most interesting upper extremity rehabilitation in the field of neurorehabilitation. CIMT is an intensive training provided in the affected upper limb for 6 hours a day, 5 days a week for 2 weeks, while unaffected arm is restrained for 90% of waking hours. Recently, instead of CIMT, modified Constraint-Induced Movement Therapy(mCIMT) has been applied because of the clinical limitations of CIMT. CIMT or mCIMT studies have used various outcome instruments to measure different aspects of upper limb function after intervention. There are various kinds of evaluation tools to measure different aspects of upper limb function after CIMT intervention. It has been proven that Pediatric Motor Activity Log(PMAL), Quality of Upper Extremities Skills Test(QUEST), Melbourne Assessment of Unilateral Upper Limb Function(MAULF), Assisting Hand Assessment (AHA) are effective. The purpose of this study was to investigate the cortical change in children with hemiplegic cerebral palsy after CIMT. As a result, use-dependent cortical reorganization was revealed. Also, increased activity of the contralateral motor cortex and decreased activity of the ipsilateral cortex were found. It supports the mechanism of cortical reorganization, the principles of neural plasticity and specifically activation of the contralateral cortex, for improving upper limb function after CIMT.

Selective Cytotoxicity of Novel Platinum(II) Coordination Complexes Containing DL-2-Hydroxy 3-Methylbutyric Acid (DL-2 하이드록시 3-메틸 부틸산물 배위자로 한 새로운 항암성 백금(II) 착체의 위암세포와 정상신장세포에 대한 선택적 세포독성)

  • 정지창;홍언표;최승기;장성구;육창수;노영수
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2003
  • A new series of highly water soluble platinum(II) complexes[Pt(II)(DL-2-hydroxy-3-methylbutyrate)(trans-l-1,2-dimninocyc1ohexane)] (PC-1) and [Pt(II)DL-2-hydroxy-3-methylbutyrate](cis-1,2-diaminocyclohexane)](PC-2) were synthesized and characterized by their elemental analysis and by various spectroscopic techniques [infrared(IR), $^{13}C$-nuclear magnetic resonance (NMR)]. In vitro antitumor activity of new Pt(II)complexes was tested against MKN-45, MKN/ADM and MKN/CDDP human gastric adenocarcinoma cell lines using colorimetric MTT[3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay for cell survival and proliferation. PC-1 and PC-2 showed active against MKN-45/P, MKN/ADM and MKN/CDDP human gastric cancer cell lines, and the antitumor activity of these compounds were comparable or superior to that of cisplatin. The nephrotoxicities of PC-1 and PC-2 were found quite less then that of cisplatin using MTT and [$^3H$] thymidine uptake tests in rabbit proximal tubule cells, human kidney cortical cells human renal cortical tissues. Based on these results, these novel platinum(II) complex compounds(PC-1 & PC-2) represent a valuable lead in the development of the new anticancer chemotherapeutic agents capable of improving antitumor activity and low nephrotoxicity.

Underlying mechanism of antioxidant action of Holotrichia in renal tissues (신장(腎臟) 조직(組織)에서 제조의 항산화(抗酸化) 효과(效果)의 기전(機轉) 연구(硏究))

  • Jeong, Ji-Cheon;Moon, Sang-Won;Kim, Kil-Seop
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.442-451
    • /
    • 1998
  • This study was carried out to examine mechanisms by which Holotrichia (HTC) produces protective effect against renal cell injury. HTC extraction (5%) prevented $H_2O_2(50mM)$-induced LDH release and lipid peroxidation in renal cortical slices. When slices were treated with 5% HTC extraction, cellular glutathione content and the superoxide dismutase activity were not altered in control and $H_2O_2$-treated tissues. When slices were treated with 50 mM $H_2O_2$, the catalase activity was significantly inhibited, which was completely restored by addition of 5% HTC. Treatment of slices with 5% HTC extraction increased the glutation peroxidase activity in $H_2O_2$-treated tissues. These results suggest that HTC prevents oxidant-induced cell injury and lipid peroxidation by increasing the activities of catalase and glutathione peroxidase in renal cortical slices.

  • PDF

Effect of Scutellaria baicalensis Georgi Extract on Oxidant-Induced Inhibition of Organic Cation in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎)의 신피질절편(腎皮質切片)에서 Oxidant로 유발된 유기양이온의 이동장애에 미치는 영향(影響))

  • Son, In-suk;Cho, Tae-sung;Kwon, Hae-yon;Jo, Mi-hyeong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Abn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.211-220
    • /
    • 2002
  • Objective : This study was undertaken to determine whether Scutellaria baicalensis Georgi extract (SbG) exerts the protective effect against oxidant-induced alterations in organic cation transport in the renal proximal tubule. Methods : Organic cation transport was estimated by examining alterations in tetraethylammonium (TEA) uptake in rabbit renal cortical slices. The slices were treated with 0.2 mM tBHP for 60 min at $37^{\circ}C$. tBl-IP caused an inhibition in TEA uptake by renal cortical slices. Such an effect was accompanied by depressed Na+-K+-ATPase activity and ATP depletion. Result : SbG prevented tBHP-induced inhibition of TEA uptake in a dose-dependent manner at the concentration ranges of 0.05-0.1%. SbG also prevented H2O2-induced reduction in TEA uptake. tBHP-induced inhibition of Na+-K+-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. Oxidants increased LDH release, which was blocked by SbG. Oxidants caused a significant increase in lipid peroxidation and its effect was prevented by SbG. Conclusion : These results suggest that SbG prevents oxidant-induced alterations in organic cation transport in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

  • PDF

Actinidia arguta Protects Cultured Cerebral Cortical Neurons against Glutamate-Induced Neurotoxicity via Inhibition of $[Ca^{2+}]_i$ Increase and ROS Generation

  • Cho, Jae-Hee;Lee, Hong-Kyu;Seong, Yeon-Hee
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2012
  • Actinidia arguta (Actinidiaceae) has been reported to have several pharmacological effects such as anti-inflammatory, anti-allergic, and anti-oxidant activities. The present study investigated the protective activity of an ethanol extract from the leaf and stem of A. arguta against glutamate-induced neurotoxicity using cultured rat cortical neurons. Exposure of cultured cortical neurons to $500{\mu}M$ glutamate for 12 h triggered neuronal cell death. A. arguta inhibited glutamate-induced neuronal death and apoptosis, which were measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining, respectively. The increase of pro-apoptotic proteins, Bax and c-caspase-3, in glutamate-treated neurons was significantly inhibited by treatment with A. arguta. A. arguta also inhibited $500{\mu}M$ glutamate-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$) and reactive oxygen species (ROS) generation, which were measured by fluorescent dyes, Fluo-4 AM and $H_2DCF$-DA, respectively. These results suggest that A. arguta may prevent glutamate-induced apoptotic neuronal death by inhibiting $[Ca^{2+}]_i$ elevation and ROS generation and, therefore, may have a therapeutic role for the prevention of neurodegeneration in cerebral ischemic diseases.