• Title/Summary/Keyword: Corrosion Period

Search Result 288, Processing Time 0.025 seconds

On the Corrosion Protection Characteristics of Port Steel Structures Corroded Naturally for a Long Period of Time (장기간 자연 부식된 항만부두 강구조물의 방식특성 연구)

  • Kim, K.J.;Choi, Y.S.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.145-154
    • /
    • 1998
  • Protection characteristics of the corroded steel pile which was served as a pier structure over 8 years in seawater have been examined in terms of corrosion potential, electrochemical impedance spectroscopy(EIS) and anodic/cathodic polarization curves. The steel structure was sectioned into two parts, waterline(splash zone, just above the seawater surface) and in-water(underwater), and protection characteristics for the two parts were investigated with the application of cathodic protection(CP) by sacrificial anodes using Zn and Al alloys. The main results obtained were as follows; (1) The corrosion potential of waterline zone was higher than that of in-water, which implied that the corrosion of waterline was more severe than that of in-water, (2) As a result of EIS examination, the transition period from the apparent CP to the substantial CP took about twenty to thirty days according to the corrosion condition.

  • PDF

Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel (12Cr합금강의 부식열화에 의한 피로파괴 특성)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.

An Experimental Study on the Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitor (방청제에 의한 콘크리트 내의 철근 방식법에 관한 실험적 연구)

  • 배수호;정영수;권영우;김년산;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.710-713
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. The most economical method of them will be the corrosion protection method using corrosion inhibitor as concrete admixture. Therefore, the purpose of this research is to investigate the performance of corrosion protection of ordinary strength and high strength concrete using corrosion inhibitor, respectively. For this purpose, after manufacturing ordinary strength and high strength concrete with and without corrosion inhibitor, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles (140 day) of wetting ($65^{\circ}C$, 90% R.H.) and drying period ($15^{\circ}C$, 65% R.H.). As a result, th high strength concrete using corrosion inhibitor showed an excellent performance of corrosion protection.

  • PDF

Corrosion Behaviour of DH36 Steel Used for Oil Platform in Splash Zones

  • Liu, J.G.;Li, Y.T.;Hou, B.R.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.190-194
    • /
    • 2015
  • The splash zone is the most corrosive area of the marine environment, and the corrosion of steel structures exposed in this area is a serious concern. DH36 steel is one of most commonly used steels for offshore oil platforms in China, and its corrosion behaviour in splash zones was studied in this paper. Polarization curves were obtained from the corroded steel exposed in this area while the morphologies and rusts of the rust steel were characterized using scanning electron microscopy and X-ray diffraction. Double rust layers were formed in the splash zone. The inner layer contained magnetite and fine flaky lepidocrocite, and the outer layer was composed of accumulated flaky lepidocrocite and a small amount of goethite. In the wet period, the iron dissolved and reacted with lepidocrocite, and magnetite appeared, while the magnetite was oxidized to lepidocrocite again during the dry period. Electrochemical reduction and chemical oxidization cycled in intermittent wetting and drying periods, and magnetite and lepidocrocite were involved in the reduction reaction, leading to serious corrosion.

Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel (상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Corrosion-bond Strength Evaluation in OPC and Slag Concrete using Accelerated Corrosion Test (촉진부식실험을 이용한 OPC 및 슬래그 콘크리트의 부식-부착강도 평가)

  • Sang-Jin Oh;Hyeon-Woo Lee;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Concrete, as a porous construction material, permits chloride penetration from outside, which yields corrosion in embedded steel. In the study, an accelerated corrosion technique (ICM: Impressed current method) was adopted for rapid corrosion formation with 10 Volt of potential, and corrosion amou nt was controlled u p to 10.0 %. Corrosion amou nt had a linear relationship with cumulative corrosion current and increased with a quadratic function of accelerating period due to cracking. Regarding bond strength test, OPC concrete showed rapid drop of bond strength over 3.0 % of corrosion weight ratio, however slag concrete with 30 % replacement ratio showed a level of 51.4~71.6 % of corrosion ratio to OPC concrete with keeping residual bond strength.

Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Seong-Jong;Shin, Sung-Kyu;Koh, Sung-Cheol
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.187-193
    • /
    • 2004
  • We have investigated the differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels in terms of electrochemical behavior and surface phenomena. Corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a low level and was maintained throughout the experimental period (40 days). The potential in the presence of SRB, however, shifted to a noble level after 20 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and a formation of corrosion products. In addition, the color of medium inoculated with SRB changed from gray to black. The color change appeared to be caused by the formation of pyrites (FeS) as a corrosion product while no significant color change was observed in the medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher than those in the absence of SRB. This is probably because SRB were associated with the increasing corrosion rates through increasing cathodic reactions which caused reduction of sulfate to sulfide as well as formation of an oxygen concentration cell. The pitting corrosions were also observed in the SRB-inoculated medium.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.