• Title/Summary/Keyword: Correlation of Pixels

Search Result 189, Processing Time 0.026 seconds

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs

  • Koh, Kwang-Joon;Park, Ha-Na;Kim, Kyoung-A
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.231-235
    • /
    • 2012
  • Purpose: This study was performed to evaluate the trabecular pattern on panoramic radiographs to predict age-related osteoporosis in postmenopausal women. Materials and Methods: Thirty-one postmenopausal osteoporotic women and 25 postmenopausal healthy women between the ages of 50 and 88 were enrolled in this study. The bone mineral density (BMD) of the lumbar vertebrae and femur were calculated using dual-energy X-ray absorptiometry (DXA), and panoramic radiographs were obtained. Fractal dimension (FD) was measured using the box counting method from 560 regions of interest ($51{\times}51$ pixels) in 6 sites on the panoramic radiographs. The relationships between age and BMD and between FD and BMD were assessed, and the intraobserver agreement was determined. Results: There was a significant difference in the FD values between the osteoporotic and normal groups (p<0.05). There was a significant difference in the FD values at three sites in the jaws (p<0.05). Age was significantly correlated with the BMD measurements, with an odds ratio of 1.25. However, the FD values were not significantly correlated with the BMD measurements, with an odds ratio of 0.000. The intraobserver agreement showed relatively higher correlation coefficients at the upper premolar, lower premolar, and lower anterior regions than the other sites. Conclusion: Age was an important risk factor for predicting the presence of osteoporosis in postmenopausal women. The lower premolar region was the most appropriate site for evaluating the FD value on panoramic radiographs. However, further investigation might be needed to predict osteoporosis using an FD value on panoramic radiographs.

Magnetic resonance imaging texture analysis for the evaluation of viable ovarian tissue in patients with ovarian endometriosis: a retrospective case-control study

  • Lee, Dayong;Lee, Hyun Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Background: Texture analysis has been used as a method for quantifying image properties based on textural features. The aim of the present study was to evaluate the usefulness of magnetic resonance imaging (MRI) texture analysis for the evaluation of viable ovarian tissue on the perfusion map of ovarian endometriosis. Methods: To generate a normalized perfusion map, subtracted T1-weighted imaging (T1WI), T1WI and contrast-enhanced T1W1 with sequences were performed using the same parameters in 25 patients with surgically confirmed ovarian endometriosis. Integrated density is defined as the sum of the values of the pixels in the image or selection. We investigated the parameters for texture analysis in ovarian endometriosis, including angular second moment (ASM), contrast, correlation, inverse difference moment (IDM), and entropy, which is equivalent to the product of area and mean gray value. Results: The perfusion ratio and integrated density of normal ovary were 0.52±0.05 and 238.72±136.21, respectively. Compared with the normal ovary, the affected ovary showed significant differences in total size (p<0.001), fractional area ratio (p<0.001), and perfusion ratio (p=0.010) but no significant differences in perfused tissue area (p=0.158) and integrated density (p=0.112). In comparison of parameters for texture analysis between the ovary with endometriosis and the contralateral normal ovary, ASM (p=0.004), contrast (p=0.002), IDM (p<0.001), and entropy (p=0.028) showed significant differences. A linear regression analysis revealed that fractional area had significant correlations with ASM (r2=0.211), IDM (r2=0.332), and entropy (r2=0.289). Conclusion: MRI texture analysis could be useful for the evaluation of viable ovarian tissues in patients with ovarian endometriosis.

A New Block Matching Motion Estimation using Predicted Direction Search Algorithm (예측 방향성 탐색 알고리즘을 이용한 새로운 블록 정합 움직임 추정 방식)

  • Seo, Jae-Su;Nam, Jae-Yeol;Gwak, Jin-Seok;Lee, Myeong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2S
    • /
    • pp.638-648
    • /
    • 2000
  • This paper introduces a new technique for block is matching motion estimation. Since the temporal correlation of the image sequence, the motion vector of a block is highly related to the motion vector of the same coordinate block in the previous image frame. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. Using that idea, an efficient predicted direction search algorithm (PDSA) for block matching algorithm is proposed. Based on the direction of the blocks of the two successive previous frames, if the direction of the to successive blocks is same, the first search point of the proposed PDSA is moved two pixels to the direction of the block. The searching process after moving the first search point is processed according to the fixed search patterns. Otherwise, full search is performed with search area $\pm$2. Simulation results show that PSNR values are improved up to the 3.4dB as depend on the image sequences and improved about 1.5dB on an average. Search times are reduced about 20% than the other fast search algorithms. Simulation results also show that the performance of the PDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Edge Enhanced Error Diffusion based on Local Average of Original Image (원영상의 로컬 평균을 이용한 경계강조 오차확산법)

  • Kang, Tae-Ha;Hwang, Byong-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2565-2574
    • /
    • 2000
  • The error diffusion method is good for reproducing continuous image to binary image. However the reproduction of edge characteristic is weak in power spectrum analysis of display error. In this paper. we present an edge-enhanced error-diffusion method which include pre-processing algorithm for edge characteristic enhancement. Pre-processing algorithm consists of the difference value between current pixel and local average of original image and weighting function of pre-filter. First. it is obtained the difference value between current pixel and the local average of peripheral pixels(5x5) in original image. Second, weighting function of pre-filter is composed by function including absolute value and sign of difference value. The improved Error diffusion algorithm using pre-processing algorithm, present a good result visually which edge characteristic is enhanced. The performance of the proposed algorithm is compared with that of the conventional edge-enhanced error diffusion by measuring the RAPSD of display error, the egde correlation and the local average accordance.

  • PDF

A Study on Three Dimensional Positioning of SPOT Satellite Imagery by Image Matching (영상정합에 의한 STOP 위성영상의 3차원 위치결정에 관한 연구)

  • 유복모;조기성;이현직;노도영
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.49-56
    • /
    • 1991
  • In this study, 3D positioning of CCT digital imagery was done by using a personal computer image processing method to increase the economic and time efficiency of SPOT satellite imagery. Image matching technique which applies statistical theories, was applied to acqusition of satellite imagery. The reliability of these coordinates was anlysed to presente a new algorithm for three dimensional positioning necessary in digital elevation modelling and orthophoto production. In acquiring image coordinates from CCT digital satellite imagery, accuracy of planimetric and height coordinates was improved by applying the image matching technique and it was found through analysis of correlation factors between sizes of target window that 19$\times$19 pixels was the most suitable size for image coordinate acquisition. From these results, it was able to present an algorithm about utility of digital imagery in the analysis of SPOT satellite data.

  • PDF

Method of Lossless Image Compression Using Hybrid Bitplane Coding (비트평면 혼합 코딩을 이용한 무손실 이미지 압축방법)

  • Moon, Young-Ho;Choi, Jong-Bum;Sim, Woo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.961-967
    • /
    • 2009
  • In this paper, the lossless compression method is proposed for an 8-bit bitplane of the input image. The lower bitplanes are not well compressed because of irregularity of pixels. To overcome these drawbacks, this paper propose a mixed coding method that using the block-based lossless compression and the bit-based losselss compression, introducing the H. 264 and the JBIG. First, to take advantage of the characteristics of the bitplanes, 8-bitplane against the top 4 bits and lower 4 bits were separated. Next, the JBIG compression method was used in separated top 4-bitplane because of a lot of correlation between bits. And a separated lower 4-bitplane was applied the improved method that using the H. 264 lossless prediction. A pre-processing method applied to the lower 4-bitplane then irregular distribution of pixel values are converted to regular. Using the proposed method to test for various test images were performed. Experimental results from a printer using 8-bit image compared to JBIG average 19%, lower 4bit image compression performance with an average of 11% could be obtained.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

Pair Correlation Analysis of Reaction-Diffusion Halftoning (반응-확산 하프토닝의 공간영역신호 분석)

  • Jho, Chueng-woon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.648-653
    • /
    • 2018
  • Analysis of a specific wavelength band of a video signal is an old research field. However, studies on the analysis of signals having the characteristics of a specific wavelength band or the generation of samples have been conducted actively in recent years. In this paper, we analyze the signal of digital halftoned image. The interpretation of halftoning in terms of signals was first made by Ulichney. We have come to the view that the signal characteristics between pixels used for half toning are good for blue noise. Lau has developed a halftoning method that uses green-noise characteristics by using output-dependent feedback as an error diffusion method. Jho has developed a method for producing halftoned images using a reaction diffusion model. In this paper, we analyze reaction diffusion halftoning in terms of signal to show green noise and compare it with existing green noise half tone.