• Title/Summary/Keyword: Correction Analysis

Search Result 2,485, Processing Time 0.03 seconds

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.

Methodology for Evaluating SBAS Satellite Correction

  • Han, Deok-Hwa;Kim, Dong-Uk;Kim, Jung-Beom;Kee, Chang-Don;Choi, Kwang-Sik;Han, Ji-Ae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • The Satellite-based Augmentation System (SBAS), as a safety critical system, should be verified on an ongoing basis to ensure the adequate performance. This study proposes two methods to evaluate the performance of SBAS satellite correction. Analysis methods based on precise ephemeris and measurement were applied to present an evaluation method for SBAS satellite correction, and a test was performed based on real data. The precise ephemeris-based analysis method had no limitations on the position of the test user and showed a high precision, enabling an accurate performance analysis in various positions. Although the measurement-based analysis method has the advantage of fast data interval, it showed a relatively lower accuracy due to the effects of various error factors. Compared with the precise ephemeris-based analysis method, there was a large difference of more than 5 m at the beginning of smoothing filter, and a difference less than 50 cm when filtered for more than an hour.

Numerical algorithm with the concept of defect correction for incompressible fluid flow analysis (오차수정법을 도입한 비압축성 유체유동 해석을 위한 수치적 방법)

  • Gwon, O-Bung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.341-349
    • /
    • 1997
  • The characteristics of defect correction method are discussed in a sample heat conduction problem showing the numerical solution of the error correction equation can predict the error of the numerical solution of the original governing equation. A way of using defect correction method combined with the existing algorithm for the incompressible fluid flow, is proposed and subsequently tested for the driven square cavity problem. The error correction equations for the continuity equation and the momentum equations are considered to estimate the errors of the numerical solutions of the original governing equations. With this new approach, better velocity and pressure fields can be obtained by correcting the original numerical solutions using the estimated errors. These calculated errors also can be used to estimate the orders of magnitude of the errors of the original numerical solutions.

Performance Analysis of Retinex-based Image Enhancement According to Color Domain and Gamma Correction Adaptation (Color Domain 및 Gamma Correction 적용에 따른 Retinex 기반 영상개선 알고리즘의 효과 분석)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.99-107
    • /
    • 2019
  • Retinex-based image enhancement is a technique that utilizes the property that the human visual characteristics are sensitive to the difference from the surrounding pixel value rather than the pixel value itself. These Retinex-based algorithms show different characteristics of the improved image depending on the applied color space or gamma correction. In this paper, we set eight different experimental conditions according to the application of color space and gamma correction, and analyze the objective and subjective performance of each Retinex based image enhancement algorithm and apply it to the implementation of Retinex based algorithm. In the case of gamma correction, quantitative low entropy images and low contrast images are obtained. The application of Retinex technique in HSI color space rather than RGB color space is found to be high in overall subjective image quality as well as maintaining color.

Analysis of Correction Displacements of the Projected Distortion Image (투사된 영상에 대한 화면 변위 보정에 관한 연구)

  • Chi, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.18-21
    • /
    • 2021
  • This paper analyzes the distortion correction of the in the micro DMD(digital micro mirror device) projector system using 0.25 or less optical throwing distance ratio. The distortion of projected image occurs depending on the performance of the optical lens, the installation location of the projection system, and the tilt of the screen. This study analyzed the physical tilt values influencing of the distortion of projected image, removed the tilt distortion of throwing distance ratio optical lens, and adjusted the distortion image by the simulation of calibration displacements. The results of this study demonstrated within 5% TV distortion reference. Moreover, the correction method reduced the pin-distortion correction of projection system.

Experimental Study of Large-amplitude Wavefront Correction in Free-space Coherent Optical Communication

  • Guo, Qian;Cheng, Shuang;Ke, Xizheng
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.627-640
    • /
    • 2021
  • In a free-space coherent optical communication system, wavefront distortion is frequently beyond the correction range of the adaptive-optics system after the laser has propagated through the atmospheric turbulence. A method of residual wavefront correction is proposed, to improve the quality of coherent optical communication in free space. The relationship between the wavefront phase expanded by Zernike polynomials and the mixing efficiency is derived analytically. The influence of Zernike-polynomial distortion on the bit-error rate (BER) of a phase-modulation system is analyzed. From the theoretical analysis, the BER of the system changes periodically, due to the periodic extension of wavefront distortion. Experimental results show that the BER after correction is reduced from 10-1 to 10-4; however, when the closed-loop control algorithm with residual correction is used, the experimental results show that the BER is reduced from 10-1 to 10-7.

Practical Guide to NMR-based Metabolomics - III : NMR Spectrum Processing and Multivariate Analysis

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.46-53
    • /
    • 2018
  • NMR-based metabolomics needs various knowledge to elucidate metabolic perturbation such as NMR experiments, NMR spectrum processing, raw data processing, metabolite identification, statistical analysis, and metabolic pathway analysis regarding technical aspects. Among them, some concepts of raw data processing and multivariate analysis are not easy to understand but are important to correctly interpret metabolic profile. This article introduces NMR spectrum processing, raw data processing, and multivariate analysis.

Comparison of Normalization Methods for Defining Copy Number Variation Using Whole-genome SNP Genotyping Data

  • Kim, Ji-Hong;Yim, Seon-Hee;Jeong, Yong-Bok;Jung, Seong-Hyun;Xu, Hai-Dong;Shin, Seung-Hun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.231-234
    • /
    • 2008
  • Precise and reliable identification of CNV is still important to fully understand the effect of CNV on genetic diversity and background of complex diseases. SNP marker has been used frequently to detect CNVs, but the analysis of SNP chip data for identifying CNV has not been well established. We compared various normalization methods for CNV analysis and suggest optimal normalization procedure for reliable CNV call. Four normal Koreans and NA10851 HapMap male samples were genotyped using Affymetrix Genome-Wide Human SNP array 5.0. We evaluated the effect of median and quantile normalization to find the optimal normalization for CNV detection based on SNP array data. We also explored the effect of Robust Multichip Average (RMA) background correction for each normalization process. In total, the following 4 combinations of normalization were tried: 1) Median normalization without RMA background correction, 2) Quantile normalization without RMA background correction, 3) Median normalization with RMA background correction, and 4) Quantile normalization with RMA background correction. CNV was called using SW-ARRAY algorithm. We applied 4 different combinations of normalization and compared the effect using intensity ratio profile, box plot, and MA plot. When we applied median and quantile normalizations without RMA background correction, both methods showed similar normalization effect and the final CNV calls were also similar in terms of number and size. In both median and quantile normalizations, RMA backgroundcorrection resulted in widening the range of intensity ratio distribution, which may suggest that RMA background correction may help to detect more CNVs compared to no correction.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.