• Title/Summary/Keyword: Correct Depth

Search Result 223, Processing Time 0.024 seconds

A study on compensation of distorted 3D depth in the triple fresnel lenses floating image system

  • Lee, Kwnag-Hoon;Kim, Soo-Ho;Yoon, Young-Soo;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1490-1493
    • /
    • 2007
  • We proposed the method to take 3D image having correct depths to the front and rear directions when the stereogram was displayed to an observer through an optical system. Since the magnified stereogram by lenses was not given correct depth to an observer despite having the same magnified disparity. Consequently, we achieved our goal by relations of compensated disparities to both directions with magnification of lenses, viewing distance and base distance of viewer in AFIS.

  • PDF

Development of Medical Ultrasound Imaging Techniques for Tissue Characterization (The Correction Method of Diffraction Effect in Measurements of Attenuation Coefficient) (조직 정량화를 위한 의용 초음파 영상 기술 개발(감쇠계수 측정에서 회질 영향의 보정법))

  • 한성현;이강호;최종호;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1925-1932
    • /
    • 1990
  • In this paper, we consider the effect of diffraction due to the finite-sized aperture and propose the new correction method of errors in measurements of attenuation coefficient owing to the diffraction effect. In the existing correction method, we obtained the attenuation coefficient after correct the spectrum at each depth. However, this paper obtain the attenuation coefficient using lg-spectral difference approach and then correct errors. As a proposed method is not correction for the spectrum at each depth but the difference spectrum, we reduce the calculation. Also the correction is performed through the total frequency range, the accurate attenuation coefficient in whole bandwidth is produced.

  • PDF

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Development of Seam-Tracking system for FCAW Arc Sensor (FCAW 용접용 용접선 추적 시스템 개발(아-크센서))

  • 권순창;최재성;장낙영
    • Proceedings of the KWS Conference
    • /
    • 1994.10a
    • /
    • pp.134-137
    • /
    • 1994
  • In this study, The mean weld current is used to correct depth direction, and weight-value, specially devised to check right-left deviation by placing more weight on the left- and right-most part of weld current during weaving, to correct weaving direction. The methodology of “design of experiments” was introduced to find out dorminant weld parameters affecting these for values.

  • PDF

A Practical Method to Correct the Saturation Effect in XMCD Spectra

  • Kim, J.Y.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.85-87
    • /
    • 2008
  • I report a simple method to correct the saturation effect in absorption spectra measured in total electron yield (TEY) mode. It does not require additional measurements of the X-ray penetration depth. In order to check the reliability of the method, X-ray magnetic circular dichroism (XMCD) spectra for polycrystalline Fe were measured at two different incident angles, and then processed with the method. The two resultant XMCD spectra were identical, and their sum rule analysis produced the ratios of orbital magnetic moment to spin magnetic moment, which were very close to the well-known value.

Derivation of Correct Solutions for Harbor Oscillations by Depth Discontinuity along Offshore Boundary (외해 경계에서의 수심 불연속에 의한 항만 공진의 정해 유도)

  • 정원무;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.254-261
    • /
    • 2001
  • It is well known that when long waves propagate from deep ocean onto a continental shelf with a very steep continental slope, the waves reflected from the shore can not propagate offshore and are re-reflected from the continental slope so that large water level fluctuations are induced near the shore. Liu(1986) has analyzed this phenomenon by assuming a topography which has a depth discontinuity along a semicircular offshore boundary, but his solution is erroneous. In the present paper, we correct his analytical solutions for a straight shoreline and a rectangular harbor. The corrected solution is then compared with the numerical results of the Galerkin finite element model of Jeong et al.(1998), which is based on the extended mild-slope equation.

  • PDF

Correction Method of Movement Path for Depth Touch by Adaptive Filter (적응적 필터를 통한 깊이 터치에 대한 움직임 경로의 보정 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1767-1774
    • /
    • 2016
  • In this paper, we propose the adaptation filtering for correcting the movement path of the recognized object by the depth information. When we recognize the object by the depth information, the path error should be occurred because of the noises in the depth information. The path error is corrected by appling the lowpass filtering, but the lowpass filtering is not efficient when the changes of the object's movement are rapid. In this paper, we apply the adaptation filtering that it gives weights adaptively as the difference between the predicted location and the measured location. To apply the adaptation filtering, we can see that the proposed method can correct accurately the path error of the radical change from simulation results.

Depth Generation Method Using Multiple Color and Depth Cameras (다시점 카메라와 깊이 카메라를 이용한 3차원 장면의 깊이 정보 생성 방법)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.13-18
    • /
    • 2011
  • In this paper, we explain capturing, postprocessing, and depth generation methods using multiple color and depth cameras. Although the time-of-flight (TOF) depth camera measures the scene's depth in real-time, there are noises and lens distortion in the output depth images. The correlation between the multi-view color images and depth images is also low. Therefore, it is essential to correct the depth images and then we use them to generate the depth information of the scene. The results of stereo matching based on the disparity information from the depth cameras showed the better performance than the previous method. Moreover, we obtained the accurate depth information even at the occluded or textureless regions which are the weaknesses of stereo matching.

Estimation of Chest Compression Depth using two Accelerometers during CPR (심폐소생술에서 두 개의 가속도 센서를 활용한 흉부 압박 깊이 추정)

  • Song, Yeong-Tak;Oh, Jae-Hoon;Suh, Young-Soo;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.407-411
    • /
    • 2010
  • During the cardiopulmonary resuscitation (CPR), the correct chest compression depth and period are very important to increase the resuscitation possibility. For the feedback of chest compression depth, the depth monitoring device based on the accelerometer is developed and widely used. But this method tends to overestimate the compression depth on the bed. To overcome this limitation, the chest compression depth estimation method using two accelerometers is suggested With the additional accelerometer between the patient and mattress on the bed, the compression of the mattress is also measured and it is used to compensate the overestimation error. The experimental results show that the single accelerometer estimates as 61.4mm for the actual compression depth of 43.6mm on the mattress. The depth estimation with the dual accelerometer was 44.6mm which is close to the actual depth. With the automatic zeroing in every single compression, the integration error for the depth can be reduced. The dual accelerometer method is effective to increase the accuracy of the chest compression depth estimation.

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF