• Title/Summary/Keyword: Corporation model

Search Result 2,054, Processing Time 0.03 seconds

Dynamic Modeling of Autonomous Underwater Vehicle for Underwater Surveillance and Parameter Tuning with Experiments (수중정찰용 자율무인잠수정의 운동 모델링 및 시험을 통한 계수 조정)

  • Lee, Phil-Yeop;Park, Sung-Kook;Kwon, Soon Tae;Park, Sangwoong;Jung, Hunsang;Park, Min-Soo;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-498
    • /
    • 2015
  • This paper presents the dynamic model of an AUV called HW200 for underwater surveillance. The mathematical model of HW200 is briefly introduced, considering its shape. The maneuvering coefficients were initially estimated using empirical formulas and a database of vehicles with similar shapes. A motion simulator, based on Simulink of Mathworks, was developed to evaluate the mathematical model of the vehicle and to tune the maneuvering coefficients. The parameters were finely tuned by comparing the experimental results and simulated responses generated with the simulator by applying the same control inputs as the experiment. The velocity of HW200 in the tuning process was fixed at a constant forward speed of 1.83 m/s. Simulations with variable speed commands were conducted, and the results showed good consistency in the motion response, attitude, and velocity of the vehicle, which were similar to those of the experiment even under the speed variation. This paper also discusses the feasibility of its application to a model-based integrated navigation system (INS) using the auxiliary information on the velocities generated by the model.

Study of surface state density of hydrogenated amorphous silicon thinfilm transistors by admittance spectroscopy

  • Hsieh, Ming-Ta;Chang, Chan-Ching;Chen, Jenn-Fang;Zan, Hsiao-Wen;Yen, Kuo-Hsi;Shih, Ching-Chieh;Chen, Chih-Hsien;Lee, Yeong-Shyang;Chiu, Hsin-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.904-907
    • /
    • 2007
  • We reported a simplified circuit model to investigate the interface states and the quality of a-Si film based on a MIS structure using admittance spectroscopy. The model can be employed easily to monitor the fabrication process of thin-film transistor and to obtain the important parameters.

  • PDF

Renewable Power Generation Forecasting Method for Distribution System: A Review (배전시스템 운영계획을 위한 신재생에너지원 발전량 예측 방법)

  • Cho, Jintae;Kim, Hongjoo;Ryu, Hosung;Cho, Youngpyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.21-29
    • /
    • 2022
  • Power generated from renewable energy has continuously increased recently. As the distributed generation begins to interconnect in the distribution system, an accurate generation forecasting has become important in efficient distribution planning. This paper explained method and current state of distributed power generation forecasting models. This paper presented selecting input and output variables for the forecasting model. In addition, this paper analyzed input variables and forecasting models that can use as mid-to long-term distributed power generation forecasting.

Study of Winding Method to Reduce Stray Loss and Stator Core Vibration of Synchronous Machine

  • Hiramatsu, Daisuke;Sutrisna, Kadek Fendy;Ishizuka, Hiroaki;Okubo, Masashi;Tsujikawa, Kazuma;Ueda, Takashi;Hachiya, Hideyuki;Mori, Junji;Aso, Toshiyuki;Otaka, Toru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • The fractional slot windings are widely used in rotating machine in order to increase the flexibility of design and improve the voltage waveform. However, the MMF wave of fractional-slot windings are found to contain unique harmonic component, which are designated as even order space flux harmonics, fractional number flux harmonics, or both. They may cause stray loss and stator core vibration. This paper proposes new winding methods "novel interspersed windings" and "expanded group windings" to reduce these harmonics. The advantages of two proposed windings are verified by using numerical analysis and measurement test of winding model.

Development of Dynamic Model of 680 MW Rated Steam Turbine and Verification and Validation of its Speed Controller (680 MW 증기터빈 동적모델 개발 및 속도제어기 검증)

  • Choi, Inkyu;Woo, Joohee;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • The steam turbine used in nuclear power plant is modeled for the purpose of verification of control system rather than the operator education. The valves, reheater and generator are modeled also and integrated into the simulator. After that, the operation data and the designed data such as heat balance diagram are utilized to identify the model parameters. It was evident that model outputs of developed simulator are very close to the measured operating ones. The simulator within dynamic model was used to verify and validate the whole control system together with field instruments. And the target plant has been operating long time.

Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200 (PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증)

  • Park, Sung-kook;Lee, Phil-yeop;Park, Sangwoong;Kwon, Soon T.;Jung, Hunsang;Park, Min-su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Computation for Launch Acceptability Region of Air-to-Surface Guided Bomb Using Artificial Neural Network (인공신경망을 이용한 공대지 유도폭탄의 투하가능영역 산출)

  • Kim, Seonggyun;Park, Jeongho;Park, Sanghyuk;Lee, Seoungpil;Kim, Kilhun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.283-289
    • /
    • 2018
  • Launch Acceptability Region(LAR) means an area for successfully hitting the target. And LAR should be calculated in real time on aircraft so that LAR can be seen by pilot. LAR can be changed by the launch condition of the bomb, the impact condition of the target, and the atmospheric condition at the time of flight of the bomb. In this paper, we propose the calculation method of LAR using Artificial Neural Network(ANN). The learning data was generated by changing each condition from existing LAR model, and LAR model was derived through ANN learning. We confirmed the accuracy of the new LAR model by comparing the difference between the result data of existing LAR model and the new LAR model. And we confirmed the possibility of real time calculation of the LAR model on the aircraft by comparing the calculation time.

Assessment of microclimate conditions under artificial shades in a ginseng field

  • Lee, Kyu Jong;Lee, Byun-Woo;Kang, Je Yong;Lee, Dong Yun;Jang, Soo Won;Kim, Kwang Soo
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.90-96
    • /
    • 2016
  • Background: Knowledge on microclimate conditions under artificial shades in a ginseng field would facilitate climate-aware management of ginseng production. Methods: Weather data were measured under the shade and outside the shade at two fields located in Gochang-gun and Jeongeup-si, Korea, in 2011 and 2012 seasons to assess temperature and humidity conditions under the shade. An empirical approach was developed and validated for the estimation of leaf wetness duration (LWD) using weather measurements outside the shade as inputs to the model. Results: Air temperature and relative humidity were similar between under the shade and outside the shade. For example, temperature conditions favorable for ginseng growth, e.g., between $8^{\circ}C$ and $27^{\circ}C$, occurred slightly less frequently in hours during night times under the shade (91%) than outside (92%). Humidity conditions favorable for development of a foliar disease, e.g., relative humidity > 70%, occurred slightly more frequently under the shade (84%) than outside (82%). Effectiveness of correction schemes to an empirical LWD model differed by rainfall conditions for the estimation of LWD under the shade using weather measurements outside the shade as inputs to the model. During dew eligible days, a correction scheme to an empirical LWD model was slightly effective (10%) in reducing estimation errors under the shade. However, another correction approach during rainfall eligible days reduced errors of LWD estimation by 17%. Conclusion: Weather measurements outside the shade and LWD estimates derived from these measurements would be useful as inputs for decision support systems to predict ginseng growth and disease development.