• Title/Summary/Keyword: Corner detection

Search Result 162, Processing Time 0.033 seconds

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

A Study on rendering image denoising using Harris corner detection and median filtering (Harris corner 검출법과 median filtering을 이용한 렌더링 이미지 노이즈 제거에 관한 연구)

  • You, Hojoon;Oh, Jaemu;Hwang, Hyeonsang;Lee, Eui Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.960-962
    • /
    • 2021
  • Monte Carlo 렌더링은 모든 빛을 광원에서부터 추적하는 것 대신, 몇 개의 빛의 경로만을 추적해서 이들의 평균으로 화소값을 정해 이미지를 만드는 방법이다. 여기서 추적하는 빛이 많다면 이미지가 사실적으로 만들어질 수 있지만 연산량이 증가한다. 따라서 적은 빛의 경로를 추적하여 렌더링을 수행하여 이미지를 만들고, 노이즈를 제거해서 많은 양의 빛을 추적하여 렌더링을 한 이미지와 유사하게 만들려는 연구가 많이 진행되고 있다. 그러나 이러한 연구들은 많은 연산량을 요구하기 때문에 고성능의 기기 사양을 요구한다. 따라서 본 연구에서는 저사양의 기기에서 활용할 수 있도록 Harris corner 검출법과 median filtering을 활용한 렌더링 이미지 노이즈 제거 연구를 수행했다.

Head Detection based on Foreground Pixel Histogram Analysis (전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법)

  • Choi, Yoo-Joo;Son, Hyang-Kyoung;Park, Jung-Min;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.179-186
    • /
    • 2009
  • In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality (증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘)

  • Park, Gyu-Ho;Lee, Heng-Suk;Han, Kyu-Phil
    • The KIPS Transactions:PartA
    • /
    • v.17A no.4
    • /
    • pp.189-196
    • /
    • 2010
  • This paper presents an improved marker detection algorithm using hybrid features such as corner, line segment, region, and adaptive threshold values, etc. In usual augmented reality environments, there are often marker occlusion and poor illumination. However, existing ARToolkit fails to recognize the marker in these situations, especially, partial concealment of marker by user, large change of illumination and dim circumstances. In order to solve these problems, the adaptive threshold technique is adopted to extract a marker region and a corner extraction method based on line segments is presented against marker occlusions. In addition, a compensating method, corresponding the marker size and center between registered and extracted one, is proposed to increase the template matching efficiency, because the inside marker size of warped images is slightly distorted due to the movement of corner and warping. Therefore, experimental results showed that the proposed algorithm can robustly detect the marker in severe illumination change and occlusion environment and use similar markers because the matching efficiency was increased almost 30%.

CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction (HEVC 화면 내 예측을 위한 FAST 에지 검출 기반의 CU 분할 방법)

  • Jeon, Seungsu;kim, Namuk;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.484-492
    • /
    • 2016
  • The High efficiency video coding (HEVC) is the newest video coding standard that achieves coding efficiency higher than previous video coding standards such as H.264/AVC. In intra prediction, the prediction units (PUs) are derived from a large coding unit (LCU) which is partitioned into smaller coding units (CUs) sizing from 8x8 to 64x64 in a quad-tree structure. As they are divided until having the minimum depth, Optimum CU splitting is selected in RDO (Rate Distortion Optimization) process. In this process, HEVC demands high computational complexity. In this paper, to reduce the complexity of HEVC, we propose a fast CU mode decision (FCDD) for intra prediction by using FAST (Features from Accelerated Segment Test) corner detection. The proposed method reduces computational complexity with 53.73% of the computational time for the intra prediction while coding performance degradation with 0.7% BDBR is small compared to conventional HEVC.

An Enhanced Method for Detecting Iris from Smartphone Images in Real-Time (스마트폰 영상에서의 개선된 실시간 눈동자 검출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.643-650
    • /
    • 2013
  • In this paper, we propose a novel method for enhancing the detection speed and rate by reducing the computation in Hough Circle Transform on real-time iris detection of smartphone camera image. First of all, we find a face and eyes from input image to detect iris and normalize the iris region into fixed size to prevent variation of size for iris region according to distance from camera lens. Moreover, we carry out histogram equalization to get regular image in bright and dark illumination from smartphone and calculate minimal iris range that contains iris with the distance between corner of the left eye and corner of the right eye on the image. Subsequently, we can minimize the computation of iris detection by applying Hough Circle Transform on the range including the iris only. The experiment is carried out in two case with bright and dark illumination. Our proposed method represents that detection speed is 40% faster and detection rate is 14% better than existing methods.

A Hybrid Algorithm for Online Location Update using Feature Point Detection for Portable Devices

  • Kim, Jibum;Kim, Inbin;Kwon, Namgu;Park, Heemin;Chae, Jinseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.600-619
    • /
    • 2015
  • We propose a cost-efficient hybrid algorithm for online location updates that efficiently combines feature point detection with the online trajectory-based sampling algorithm. Our algorithm is designed to minimize the average trajectory error with the minimal number of sample points. The algorithm is composed of 3 steps. First, we choose corner points from the map as sample points because they will most likely cause fewer trajectory errors. By employing the online trajectory sampling algorithm as the second step, our algorithm detects several missing and important sample points to prevent unwanted trajectory errors. The final step improves cost efficiency by eliminating redundant sample points on straight paths. We evaluate the proposed algorithm with real GPS trajectory data for various bus routes and compare our algorithm with the existing one. Simulation results show that our algorithm decreases the average trajectory error 28% compared to the existing one. In terms of cost efficiency, simulation results show that our algorithm is 29% more cost efficient than the existing one with real GPS trajectory data.

Damage Detection in Steel Box Girder Bridge using Static Responses (강박스 거더교에서 정적 거동에 의한 손상 탐지)

  • Son, Byung Jik;Huh, Yong-Hak;Park, Philip;Kim, dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.693-700
    • /
    • 2006
  • To detect and evaluate the damage present in bridge, static identification method is known to be simple and effective, compared to dynamic method. In this study, the damage detection method in steel box girder bridge using static responses including displacement, slope and curvature is examined. The static displacement is calculated using finite element analysis and the slope and curvature are determined from the displacement using central difference method. The location of damage is detected using the absolute differences of these responses in intact and damaged bridge. Steel box girder bridge with corner crack is modeled using singular element in finite element method. The results show that these responses were significantly useful in detecting and predicting the location of damage present in bridge.