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Abstract 
 

We propose a cost-efficient hybrid algorithm for online location updates that efficiently 

combines feature point detection with the online trajectory-based sampling algorithm. Our 

algorithm is designed to minimize the average trajectory error with the minimal number of 

sample points. The algorithm is composed of 3 steps. First, we choose corner points from the 

map as sample points because they will most likely cause fewer trajectory errors. By 

employing the online trajectory sampling algorithm as the second step, our algorithm detects 

several missing and important sample points to prevent unwanted trajectory errors. The final 

step improves cost efficiency by eliminating redundant sample points on straight paths. We 

evaluate the proposed algorithm with real GPS trajectory data for various bus routes and 

compare our algorithm with the existing one. Simulation results show that our algorithm 

decreases the average trajectory error 28% compared to the existing one. In terms of cost 

efficiency, simulation results show that our algorithm is 29% more cost efficient than the 

existing one with real GPS trajectory data. 
 

 

Keywords: Location-Based Service, Corner Detection, Moving Object Tracking, Online 

Trajectory Sampling  
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1. Introduction 

Due to the rapid growth of GPS technology and embedded systems, portable devices such as 

smart phones are able to easily obtain their locations while they are moving. Therefore, many 

useful applications based on location (location-based services (LBS)) are now emerging as 

promising technologies [1, 2, 3, 4, 5]. LBS applications need periodic location updates from 

their portable host devices to track their trajectories. Many location update services are 

designed to perform in a streaming fashion; however, too frequent location updates could 

result in large data storage costs for the server and possibly significant battery consumptions of 

the mobile devices. On the other hand, if location updates occur too seldom, it is hard to track 

the location of moving objects. Additionally, the server might not be able to interpolate and 

reconstruct the entire trajectories given minimal location information. Because of these 

trade-off relationships, setting location update strategies are considered as optimization 

problems [2, 6, 7]. There have been many optimization-based location update studies to find 

the minimal location information to describe the original trajectories. However, most 

algorithms employ an offline approach in which the server collects the entire trajectory of the 

moving object and optimizes the location information (sample points). However, we consider 

more practical environments in which the mobile device itself decides whether to update its 

online location. Here, online means that the moving object decides whether to update its 

location to the server while it collects location information in real time. 

In this paper, we focus on an online location update algorithm that tracks the trajectory of a 

moving object in real time. The goal of our online location-update algorithm is to decrease the 

average trajectory error while minimizing the number of location update points to decease the 

communication overhead. Here, the trajectory error means the difference between the actual 

mobile device trajectory and the trajectory reconstructed from the sample points. To achieve 

this goal, we efficiently combine feature point detection with our previously proposed online 

trajectory-based sampling algorithm.  

2. Related Work 

Many location update methods for moving objects have been proposed in the literature [2, 6, 8, 

9, 10, 11]. However, most previous work focused on off-line-based location update methods, 

which assumes that the LBS server (simply, server) first collects the entire trajectory of the 

mobile device and optimizes the location update points to save storage [2, 6, 11]. We are 

interested in online-based location update methods in which the mobile device itself decides 

whether to update the current location in real time. This online-based location update approach 

is challenging because the mobile device and server have no information on the future 

trajectory but must decide on the fly whether to accept the current location. Among many 

existing online location update methods, one of the most straight-forward is a time-based 

trajectory sampling (location update) method. This method periodically (regularly in time) 

updates the locations of moving objects. As expected, the time-based location update method 

can provide an accurate trajectory of a moving object to the server, but this method often 

results in too frequent communication and thus often is burdened with increased 

communication and data storage costs [8, 12, 13, 14]. Velocity-based location update methods 

improve the time-based location update method by adaptively updating the location of the 

moving object according to the velocity of the moving object [2]. It turns out that the 
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velocity-based location update method decreases the communication cost compared with the 

time-based approach. Among online location update methods, one of the most popular is a 

distance-based method. This method initially predicts a threshold distance from the previous 

location update point within which the portable device stays. Portable devices update their 

locations when they move out of this prediction distance. It was reported that the 

distance-based location update method decreases the frequency of redundant location updates 

because the device does not update its location if it stays within this prediction distance. 

However, one of the difficulties of using this algorithm is to find the optimal prediction 

distance for various situations. Additionally, if the trajectory of the mobile device is simple or 

constantly moves straight, redundant location updates occur often. To improve the existing 

location update algorithms, Park et al. recently proposed a trajectory error-based (TB) location 

update algorithm that can decrease the number of location update (sample) points [8]. This 

method updates the location of a moving object only if the current trajectory exceeds a 

predefined trajectory error. Here, trajectory error means the difference between the actual 

trajectory and the trajectory reconstructed from location update sample points. This trajectory 

error could be considered as a predefined Quality of Service (QoS) level of the mobile device. 

This algorithm decreases the number of sample points compared with the distance-based 

approach, and therefore significantly decreases the trajectory data and communication cost 

between the server and the portable devices. However, the TB algorithm chooses sample 

points that are not located at roadway corners or intersections. Therefore, while the TB 

algorithm minimizes the number of sample points, their locations are not optimal and produce 

unnecessary trajectory errors.  

3. Problem Formulation 

3.1 System Model 

We assume that the mobile device updates its locations to the server and the server stores the updated 

location information. A trajectory of the mobile device is a sequence of GPS location points (sample 

points) in ascending timestamp order of its positions on the map and denoted as T={s0, s1, s2, …, sn}. 

Here, n is the number of sample points in the trajectory T.  

Location updates of the mobile device occur in a discretized manner and the server does not know 

intermediate locations between the last and current sample points. Therefore, the server must interpolate 

the trajectory between the last updated sample point and the current location. There exist many 

interpolation methods, but we assume that the server employs a piecewise linear interpolation method 

to reconstruct the entire trajectory, given locations of these discrete sample points from the mobile 

device. We use the piecewise linear interpolation method because it has good performance in terms of 

reconstructing trajectories and ease of implementation. In most cases, the actual trajectory where a 

mobile device moves and the reconstructed trajectory using the interpolation method are not same 

because the location update (sampling) occurs in a discretized manner. We define trajectory errors as 

follows: the set of distances between the actual trajectory of mobile devices and the trajectory 

reconstructed with the sample points. The trajectory error between two sample points is computed as 

average distances between the actual location on the actual trajectory and the estimated location on the 

reconstructed trajectory. In a similar way, the average trajectory error is computed as the average of 

trajectory errors for all sample points up to the current time. 

The estimated location is computed by linear interpolation between the current sample point and the 

last sample point. Similar to [8], we use the great circle distance method to compute the geological 

distance between the actual location and the estimated location. Details of computing the trajectory 

error and the great circle distance between two geological locations are well described in [15]. Fig. 1 

shows an example of trajectory error when two sample points are given. 

Obviously, the trajectory error decreases as the number of sample points increases because the 
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reconstructed trajectory becomes close to the original trajectory. However, if the number of sample 

points increase, the networking and the database storage cost at the server and battery consumption of 

the mobile device will also increase. Therefore, it is desired to minimize the number of sample (location 

update) points, while minimizing the average trajectory error. The most straightforward trajectory 

sampling method so far is a time-based trajectory sampling method. This method updates sample points 

to the server regularly in time (e.g., every 2 seconds). However, it was reported that many time-based 

trajectory sampling methods suffer from redundant sample points and therefore result in unnecessary 

networking and storage costs at the server. Our goal is to choose, in real-time, optimal sample point 

locations while minimizing the average trajectory error at the server. 

 

 
Fig. 1. Actual trajectory of the mobile device and trajectory reconstructed from sample points. 

 

3.2 Feature (Corner) Point Detection 

We assume that the server possesses an entire map (e.g., google map) for the region of interest where the 

mobile device is travelling. Given a map image file, the server finds feature points by exploiting a 

corner detection algorithm developed in the computer vision community. The motivation for using 

corner points as feature points is as follows. We noted that trajectory error mainly occurs when the 

mobiles change their direction suddenly (e.g., turning at intersections.) Our idea is to use these corner 

points as sample points to decrease the trajectory error. To the best of our knowledge, none of the 

previous work on optimal online (real-time) trajectory sampling methods has considered using these 

corner points from the map image as sample points to minimize trajectory errors. 

The server detects feature points by computing corner points on the map using the Harris corner 

detection algorithm offline [16]. The Harris corner detection algorithm is a robust corner detection 

algorithm popular in computer vision communities. We employ the algorithm because it is easy to 

implement and fast, but any efficient corner detection algorithm can be used if it can provide accurate 

corner information from the given map images. 

Given a map image file (e.g., a jpg file), corners are defined as pixels in the image at which large 

changes in appearance occur. That is, corners are feature points where significant changes occur in all 

directions. Because we are interested in trajectory of mobile devices, corners correspond to curves, 

corners, or intersections on the road in the map image. We believe that these corner points should be 

strong candidates for sample points to update because large direction changes occur around them. 

Additionally, if we skip these corner points as sample points, trajectory error would increase. These 

significant changes in the map image file are computed by using image gradients. The server finds as 

many corner points as possible and only extracts corner points that are located on roads; it also 

eliminates duplicate corner points. Fig. 2 shows an example of finding corner points using the Harris 

corner detection algorithm. The map of Songdo (Fig. 2(a)) in Incheon, South Korea, was acquired from 

Google maps [17]. Corner points detected, using the Harris corner detection algorithm, are marked as 

small squares in Fig. 2(b). Extracted corner points (blue points) located on a road are shown in Fig. 2(c). 

In practice, these detected corner points can be stored at the mobile device; alternatively, the server 

can report the points to the mobile device in real time when the mobile device approaches them. 
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points)(a) Songdo map in Incheon, South Korea from Google 

map 

Corner detection using Harris corner detection algorithm 

(c) Extract corner points that are located on roads 

  

 

 

 

 

Fig. 2. Feature points (blue dots) detection using the Harris corner detection algorithm on 

Songdo map in Incheon, South Korea, acquired from Google maps. 
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3.3 Online Trajectory-based Sampling  

There are many online (real-time) trajectory sampling algorithms, but one of the most efficient so far is 

called the online trajectory-based sampling (TB) algorithm, proposed by Park et al. [8]. The idea of the 

TB algorithm is to choose sample points at which the trajectory error exceeds a predefined error 

threshold. Here, the predefined error threshold is considered a Quality of Service (QoS) value and is 

agreed upon between the server and the mobile device. The TB algorithm is motivated by the fact that 

existing online trajectory sampling algorithms produce many redundant sample points, especially when 

the mobile device travels along straight roads. Park et al. noted that many distance-based online 

trajectory sampling algorithms suffer from these redundant sample points. Additionally, the 

distance-based algorithm has large trajectory errors if the speed of the mobile device varies. To solve 

these problems, the TB algorithm does not report sample points as long as the trajectory error is smaller 

than some threshold value. If a mobile device keeps moving straight, the number of sample points 

becomes small compared with distance-based algorithms.  

The problem with the TB algorithm arises when the mobile device changes its direction frequently 

(e.g., when the mobile device encounters intersections or makes turns). Because the TB algorithm is not 

designed to preferably choose corner points as sample points, it always waits and chooses sample points 

where the trajectory error is greater than the threshold value. Therefore, in most cases the TB algorithm 

does not choose corner points as the sample points. For this reason, the TB algorithm produces 

unnecessary trajectory errors. Fig. 3 highlights the problem of the TB algorithm. Figure 3(a) shows the 

actual trajectory on which the mobile device actually moves from a start point (S) to an end point (E). 

Time-based sampling (Fig. 3(b)), which updates sample points regularly in time, has 12 sampled points 

with no trajectory error. The reconstructed trajectory coincides with the actual trajectory when 

piecewise linear interpolation is used. The TB algorithm uses 5 sample points, which prevent the 

trajectory error from exceeding the predefined threshold value, δ, as shown in Fig. 3(c). We observe that 

no sample points are located on corners because the TB algorithm does not update sample points until 

(a) Actual  trajectory (b) Time-based trajectory 

sampling (14 sample points)  

(c) Trajectory-based sampling [8] 

(7 sample points) 

Fig. 3. Example of trajectory tracking and sampling. Trajectory-based sampling algorithm 

results in a large interpolation error as shown in (c). 

 

 

 

 

(d)  Sampled points using feature point 

detection (Section 3.1) (6 points)  
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the trajectory error exceeds the error threshold value. These cases occur when the mobile device has 

already passed an intersection. If we use corner points as sample points as shown in Fig. 3(d), only 4 

sample points are required and there is no trajectory error for this case. 

 

3.4 Hybrid Online Location Update Algorithm 

Our hybrid online location update algorithm is composed of 3 steps: feature (corner) point detection, 

trajectory-based sampling with a threshold value δ, and an additional trajectory-based sampling with the 

threshold value τ =δ/2. The first step (step 1 in Fig. 4(a)) is detection of feature points using the Harris 

corner detection algorithm as described in Section 3.2. The server finds all feature (corner) points on the 

given map image files and reports the corner points to the mobile device in real time when the mobile 

device approaches them. We expect that these corner points are strong candidates to become sample 

points because they contribute to decreasing trajectory errors.  

For simple trajectories such as that shown in Fig. 3(a), the output sample points after step 1 do not 

produce any trajectory errors or might have small trajectory errors. However, for real-life situations, it is 

possible that the corner detection algorithm might not detect corner (feature) points because of 

limitations of the corner detection algorithm or incorrect map information. For these cases, the output 

sample points after step 1 might have unexpected trajectory errors. As a second step (step 2 in Fig. 4), 

we employ our previously proposed TB algorithm [8] explained in Section 3.3 to prevent these 

unexpected trajectory errors. The reason we adopted the TB algorithm as a second step is to suppress the 

maximum trajectory error below some threshold value (δ). This δ value could be considered as a Quality 

of Service (QoS) value of the online location update algorithm. The TB algorithm can always guarantee 

that the maximum trajectory error is less than or equal to given threshold value. The maximum 

trajectory error is always bounded because the algorithm adds sample points whenever the current 

trajectory error exceeds the threshold value. We expect that this step adds several sample points that our 

first step fails to detect.  

As a final step (step 3 in Fig. 4), we employ the second TB algorithm with a smaller threshold value 

(τ =δ/2) than in step 2. The real map could have many road intersections; these intersections are 

considered feature points in our step 1. However, as long as the mobile device moves straight and does 

not turn, we do not need to consider all the corner points in intersections as sample points. These points 

at intersections are meaningful and should be final sample points only if the mobile device changes its 

direction there (e.g., turns). Otherwise, the corner points are redundant sample points, and need to be 

eliminated. For this reason, we employ the TB algorithm at the last stage with a smaller threshold value 

(τ =δ/2) to eliminate these redundant sample points mostly on straight paths. The TB algorithm does not 

update sample points as long as the trajectory error is below the threshold value. Therefore, all 

redundant sample points on a straight road can be eliminated. Our proposed hybrid online location 

update algorithm is summarized in Fig. 5. 

 

 
Fig. 4. System architecture of the proposed online sampling algorithm. A circle indicates a sampled 

location point. (a) Initially sampled points. (b) Output points after employing feature point detection 

(Section 3.2). (c) Output points after employing the online trajectory-based sampling algorithm with δ 

(Section 3.3). (d) Output points after employing the second online trajectory-based sampling with τ. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015                                      607 

SelectSamples begin 

    start location 

     start time 

        // temp location 

       // temp array 

     threshold error 

    // index of lastly sent location 

    // index of lastly updated location in     

    // index of current location 

whenever (new location information is available) begin 

      

    current location 

    current time 

// Step 01. Feature point detection 

      GetCornerPoint(      ) call 

if (     is not null) begin 

add      in     

                            

end 

// Step 02. Trajectory-based sampling with δ 

      GetTrajectoryPoint (           δ) call 

if (     is not null) begin 

add      in     

                              

end 

// Step 03. Trajectory-based sampling with τ 

if (    is updated) begin 

     
  lastly updated location in     

       lastly updated time in     

      GetTrajectoryPoint (     
            ) call 

if (     is not null) begin 

send      to the server 

         

         end 

end 

end 

end 

GetCornerPoint(      ) begin 

    current location(argument) 

    all corner location 

    // start index of corner location 

   last index of corner location 

For all intermediate count of corner points 

               
  

if (       ) begin 

return    

end 

end 

GetTrajectoryPoint(            ) begin 

    current location(argument) 

    current time(argument) 

    index of lastly saved location(argument) 

   index of current location(argument) 

For all intermediate points         

    
     
     

        

     

       
     

         

if (     

     ) begin 

return      

end 

end 

Fig. 5. Proposed hybrid online trajectory sampling algorithm 
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Fig. 6 shows the result of running our algorithm on an example trajectory. The time-based trajectory 

method samples 51 points as shown in Fig. 6(a). We consider these initially sampled points to be close 

enough to the actual trajectory to consider as ground truth data. Our step 1 choses 8 sample points 

located at corners (here, intersections of the road). The green sampled points were redundant and needed 

to be eliminated. Our feature point detection algorithm found all corner points except that in the middle. 

We assume that the corner detection algorithm failed to detect this point due to a limitation of the corner 

detection algorithm itself. Here, redundant points (i.e., green sample points) were produced when the 

mobile made no turns at intersections (see Fig. 6(b)). Our step 2 compared the output sample points 

after step 1 with the ground truth and added several sample points if the trajectory error was greater than 

δ. Here, a red sample point was added because the trajectory error was greater than δ (see Fig. 6(c)). 

Finally, our step 3 removed redundant sample points (green) by employing the trajectory-based 

sampling algorithm again with (τ= δ/2) (see Fig. 6(d)). We observe that our step 3 was able to 

successfully remove redundant sample points (green) and finally just 6 sample points remained after 

step3. Fig. 6(e) shows the output sample points by running the only TB algorithm with δ. This figure 

shows that the TB algorithm does not choose corner points as sample points and therefore results in 

trajectory errors that could have been avoided. 

4. Experimental Results 

4.1 Experimental Setup 

We used real GPS trajectory data to investigate the effectiveness of the proposed algorithm. We 

developed the TestGPS smart phone application to collect the GPS trajectory data. Fig. 7 (a) shows a 

screenshot of the TestGPS application running. The application has four menu buttons: Start, Stop, 

sendLog, and delLog. The first, Start, starts GPS data collection and the second, Stop, stops it. The 

‘sendLog’ button sends the stored GPS information to the server and the ‘delLoG’ button deletes the 

stored GPS information. When we press the ‘Start’ button, the app starts storing the current location of 

the user; it stores Latitude, Longitude, Altitude, and the current time as an array. Fig. 7 (b) shows a 

screenshot of sample GPS trajectory data.  

We collected 30 different bus trajectories (routes) in Incheon, South Korea, with the application. The 

bus trajectories were carefully chosen to avoid overlapping trajectories. Four sample bus trajectories are 

shown in Fig. 8. Here, initially sampled points (blue dots) are acquired every 3 seconds using the 

TestGPS app. We assume that these initially sampled points are dense enough to be a actual trajectory. 

Therefore, we assume that these initially sampled points, based on time-based trajectory sampling in 

Fig. 8, are actual trajectories (ground truth data). We used Matlab (R2013a) to implement our algorithm 

and the TB algorithm. Initially, we set the threshold value δ in step 2 as 60 meters and τ in step 3 as 30 

meters (δ/2). The machine employed for this study was an Intel I7-2600 CPU 3.40 GHz with 8 GB main 

memory.  
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Fig. 6. Output sample points after each step. ‘S’ and ‘E’ are start and end points, 

respectively. (a) Time-based trajectory sampling results in 51 sample points. (b) Both green 

and blue sample points were detected as feature points after step 1. (c) Red sample point 

was added after step 2 because the trajectory error was greater than δ. (d) Green sample 

points, which are redundant, were eliminated after step 3 (e) Output sample points (black 

circles) of the TB algorithm 

(a) Time-based trajectory 

sampling (ground truth, 51 

(b) Output sample points  

after step 1 (8 points).  (b) 

(d) Output sample points after 

step 3 (6 points) 

(e) TB algorithm  

(7 points) 

(c) Output sample points after 

step 2 (9 points) 
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Fig. 8. Examples of bus trajectories in Incheon, South Korea, using the TestGPS application. 

Sample points (blue dot) were stored every 3 seconds. We assume that these collected bus 

trajectories are actual trajectories (ground truth data). 

 

 

 

 

 

 

(a) Sample trajectory of bus 908 in 

Incheon, South Korea (196 points) 

(b) Sample trajectory of bus 532 in 

Incheon, South Korea (277 points) 

 

(c) Sample trajectory of bus 91 in 

Incheon, South Korea (372 points) 

(d) Sample trajectory of bus 536 in 

Incheon, South Korea (139 points) 

Fig. 7. Screenshots of the TestGPS application on the Galaxy S3 smartphone. 

(a) TestGPS smartphone 

application 
(b) GPS trajectory data of various bus routes 

collected by TestGPS application  
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4.2 Experimental Results 

In general, the number of sample points and the average trajectory error have a trade-off relationship. 

Our goal is to provide cost-effective sample sets to decrease average trajectory errors while minimizing 

the number of sample points. Therefore, the reconstructed trajectory using location update points 

(sample points) should be close to the actual trajectory with the minimal number of sample points. The 

average trajectory error (e) is defined as  

 

  
                      

                  
 

 

Here, the average trajectory error is measured in meters (m). Our previously proposed online trajectory 

based sampling algorithm (simply, TB algorithm) significantly outperforms existing online location 

update algorithms (e.g., distance based algorithms) in terms of the trajectory error and cost efficiency 

[8]. Therefore, we focus on comparing our proposed algorithm with the TB algorithm in terms of 

average trajectory error and cost efficiency. 

 

4.2.1 Average Trajectory Error 

We first evaluate whether our proposed online trajectory sampling algorithm decreases the average 

trajectory error compared with the existing online location update algorithm, namely, the TB algorithm. 

Figs. 9 and 10 show the average trajectory error of the TB and the proposed algorithm for various bus 

routes. We observe that our algorithm decreases the overall average trajectory error approximately 28 

% compared with the TB algorithm. In most cases, our proposed algorithm needs few more sample 

points, but it significantly decreases the average trajectory errors compared with the TB algorithm.  

Fig. 11 highlights the strength of using our proposed algorithm. This route is for bus No. 512 in 

Incheon, South Korea. We chose this route because it has many intersections and the bus changes 

direction often. The figure shows that the TB algorithm skips the corner points and updates incorrect 

sample points. Therefore, the TB algorithm increases the average trajectory error (e=29.29 m) and the 

reconstructed trajectory (Fig. 11(a)) is not close to the actual trajectory (Fig. 11(c)). Our proposed 

algorithm significantly decreases the average trajectory error (e=17.76 m) by choosing corner points as 

feature points (see Fig. 11(b)). Next, we modify the threshold value (δ) of our step 2 and investigate the 

robustness of our proposed algorithm with respect to various δ values. Fig. 12 shows the average 

trajectory errors with respect to various δ values. We observe that as δ value increases, the gap between 

the proposed algorithm and the TB algorithm also increases. We observe that the TB algorithm is more 

sensitive to the δ value than our proposed algorithm because the TB algorithm skips corners as sample 

points and chooses incorrect sample points  

 

 
Fig. 9. Comparison of the average trajectory error (meters) between the TB algorithm and the proposed 

algorithm for the first set bust routes. 
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Fig. 10. Comparison of the average trajectory error (meters) between the TB algorithm and the 

proposed algorithm for the second set of bus routes. 

 

 

 
(a) 

 

 
(b) 

 

 

 

 
(c) 

 

Fig. 11. Examples of employing (a) the TB algorithm and (b) the proposed algorithm for the 512 bus 

route in Incheon, South Korea. The blue circles and the red lines in (a) and (b) indicate the sample points 

and the reconstructed trajectory, respectively. The black circles highlight the strength of the proposed 

algorithm. The trajectory in (c) is the actual trajectory using time-based sampling. 
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Fig. 12. Average trajectory error (meters) with respect to various threshold values (δ). Here, the average 

trajectory error is computed over all bus routes. 

 

 

4.2.2 Cost Efficiency Ratio (Utilization)  
The average trajectory error is inversely proportional to the number of sample points. We investigate 

how cost efficient our algorithm is compared with the TB algorithm. Let     and      be the average 

trajectory errors of the TB algorithm and our proposed algorithm, respectively. Similarly, let     and 

     be the number of sample points of the TB algorithm and our proposed algorithm, respectively. We 

define the cost efficiency ratio (μ) as following:  

 

μ  
   

    

 
   

    

 

 

If μ   , then our algorithm efficiently decreases the average error using a minimal addition of sample 

points compared with the TB algorithm. Otherwise, we conclude that the TB algorithm is more cost 

efficient. 

Table 1 shows the average error, the number of sample points, and μ  values for various bus 

trajectories (routes) in Incheon, South Korea. For all bus trajectories, μ values are greater than 1; 

therefore, our algorithm has a better cost-efficiency ratio than the TB algorithm. These results indicate 

that our algorithm efficiently decreases the average trajectory error with minimal additional sample 

points. When δ value is 60m, our algorithm is approximately 18% more cost efficient than the TB 

algorithm. Fig. 13 shows the μ values with respect to the various threshold (δ) values in our step 1. 

Similarly to Fig. 11, the cost efficiency increases as the δ value increases and our algorithm is more cost 

efficient than the TB algorithm for all δ values. For the route of bus No. 536 with δ=100, our algorithm 

is approximately 92% more cost efficient than the TB algorithm. The     and      values for this bus 

route are 48.50 and 17.48, respectively, while the     and      are 9 and 13, respectively. 

 

4.2.3 Sensitivity of the Second Threshold Value, τ, in Step 3 
Our algorithm sets the second threshold value, τ, as δ/2 because the second threshold value should be 

smaller than the first threshold value. To show the robustness of our proposed algorithm with respect to 

various τ values, we fix the first threshold value (δ) as 60 m and modify the τ value between 20 m and 40 

m and investigate the robustness. Fig. 14 shows the average trajectory error with respect to various τ 

values. For all τ values, our algorithm results in smaller trajectory errors than the TB algorithm. When 

τ=20 m, our algorithm has 34% smaller trajectory errors than the TB algorithm. Fig. 15 shows the μ 

values for various τ values. For all τ values, our algorithm has better cost efficiency than the TB 

algorithm. When τ=100 m, our algorithm is approximately 29% more efficient than the TB algorithm. 
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Table 1. Summary of the average trajectory error, number of sample points, and cost efficiency ratio for 

various bus numbers in Incheon, South Korea. Here, δ=60 and τ=30. 

Bus Number 91 908 8 780 7801 909 27 35 

TB Algorithm      26.41 27.37 26.35 25.84 24.66 28.35 27.63 29.27 

    47 25 21 31 28 27 16 20 

Proposed 

Algorithm 
     24.07 18.32 20.90 20.16 18.91 24.83 19.80 21.83 

     48 33 24 34 32 25 19 23 

μ 
1.07 1.13 1.10 1.16 1.14 1.23 1.17 1.16 

 

Bus Number 512 62 532 536 103 1031 535 33 

TB Algorithm      29.29 26.13 27.82 25.16 28.50 29.22 27.58 23.30 

    36 11 22 13 10 8 13 10 

Proposed 

Algorithm 
     17.76 17.34 16.25 14.27 17.37 15.83 23.68 18.62 

     40 14 30 15 14 12 15 10 

μ 
1.48 1.18 1.25 1.52 1.17 1.23 1.01 1.25 

 

Bus Number 161 6 61 9 92 21 754 1301 

TB Algorithm      24.18 25.29 28.53 25.61 27.10 26.53 30.23 26.77 

    8 26 28 13 34 9 6 19 

Proposed 

Algorithm 
     17.97 17.43 17.92 15.08 18.67 23.43 18.32 26.27 

     9 33 37 15 43 10 9 19 

μ 
1.19 1.14 1.20 1.47 1.20 1.47 1.14 1.02 

 

Bus Number 112 303 7802 32 753 65 

TB Algorithm      26.00 28.41 26.90 21.84 28.36 28.17 

    7 15 18 12 18 28 

Proposed 

Algorithm 
     20.11 18.76 17.77 16.34 18.33 18.97 

     8 20 22 16 24 31 

μ 
1.13 1.13 1.23 1.01 1.16 1.34 

 

 

 
 

Fig. 13. Cost efficiency ratio with respect to various δ values in Step 1. Here,   is the average   value 

for all bus routes. 
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Fig. 14. Average trajectory error with respect to the second threshold value τ. Here, the average 

trajectory error is computed as the average e value for all bus routes. 

 

 
Fig. 15. Cost efficiency ratio with respect to the second threshold value τ. Here,   is the   for all bus 

routes. 

 

4.2.5 Comparison with a Linear Dead-Reckoning Method 
One of most popular online trajectory method in calculating moving object’s position is Linear 

Dead-Reckoning (LDR) method [18, 19]. It is currently used in many navigation systems and location 

estimation systems due to its simplicity and ease of implementation. The LDR algorithm calculates and 

estimates moving object’s current position by using both previously determined position and linear 

prediction of moving direction. The moving direction is obtained from the most recent update points. 

Fig. 16 shows both the LDR method and its error model. The reconstructed trajectory by employing the 

LDR method consists of the sampled location points and moving directions. As shown in Fig. 16, the 

LDR method has a drawback in that it would yield discontinuities in the reconstructed trajectories. 

We have compared our proposed method with the LDR method for the 30 bus routes we tested. Note 

that the definition of the trajectory error used for the LDR method and the proposed method is not same. 

The trajectory error of the LDR method is a distance between the moving vector and the location points 

in the original trajectory. On the while, the trajectory error of the proposed method is a distance between 

the location points in the original trajectory and interpolated location points from the reconstructed 

trajectory.  

 Since the error models for the LDR and the proposed methods are not same, we use these two 

different trajectory error models to compare the proposed method with the LDR method. When the 

trajectory error model employed in this paper is used, the proposed method shows better performance 

by 3.81 times than the LDR method in terms of the cost efficiency. For the 29 bus routes out of 30 bus 

routes, the proposed method outperformed the LDR method. If we use the error model used in the LDR 

for calculating cost efficiency, the proposed method is 1.49 times more cost efficient than the LDR 

method. The proposed method showed better results for the 17 bus routes out of 30 routes. The LDR 

method showed comparable results when its own error model is used.  
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However, the LDR method has several potential problems. First, the error model employed for the 

LDR method is not practical in that it could yield discontinuous reconstructed trajectories as shown in 

Fig. 16. Second, we observed that the LDR method results in poor performance when the moving object 

encounters corners or intersection. We observe similar problems for the TB method when the moving 

object encounters corners or intersections as shown in Fig. 11. This is mainly because these two existing 

online location update methods (i.e., TB and LDR) do not consider corners or intersections when they 

choose sample points. Also, the LDR method only cares about the trajectory shapes of the reconstructed 

trajectories, but does not consider timestamps when it predicts moving directions. In this case, users 

may have incorrect location information results when users query with some specific timestamps. Our 

proposed method chooses the error model where locations of missing points in the sampled trajectories 

are interpolated with queries’ timestamps. Therefore, the proposed method is able to provide more 

accurate estimates of missing locations with timestamps from the sampled trajectories. 

 

4.2.6 Transmission Delay Overhead 
When the proposed online location update method is used, the server should report the corner points 

to the mobile device when the mobile device approaches to the corner points. The additional delay 

between the server and the mobile device could be generated when these pre-calculated corner points 

are transmitted. We have measured these additional delays for the tested 30 bus routes using the LG 

Optimus 4G cell phone. For the tested bus routes, we observe that the transmission delay is a dominant 

factor, which contributes to the actual delay and other delays including propagation delays are 

negligible compared with the transmission delay.  The average transmission delay we measured 

between the server and the mobile device is approximately 0.21 sec for the tested bus routes. 

We calculate the lower and upper bound of the (transmission) delay overhead when the proposed 

method is employed. Let the number of sample points for the TB algorithm and the number of corner 

points be     and        , respectively. For the worst case, the proposed algorithm utilizes both     

and        , to choose its sample points, since this location information can be used in our step 1 and 2 

of the proposed algorithm. Therefore, for the worst case, the delay overhead of the proposed algorithm 

compared with the TB algorithm is                  . For the best case, the delay overhead 

becomes             when our first step of the proposed algorithm is good enough to detect all sample 

points with a bounded trajectory error. Let      be the number of sample points for the LDR method. 

Similarly, the delay overhead of the proposed algorithm compared with the LDR algorithm is 

                   for the worst case and              for the best case.  For the 908 bus route, 

      ,           , and      = 58. 

In practice, the mobile device does not need to request the location of corner points in real time, since 

it can download all corner information when it installs our TestGPS application.  

Fig. 16. Location estimation and the error model for the Linear Dead-Reckoning (LDR) Method. 
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4.2.7 Summary of Experimental Results 
Table 2 and 3 summarize the comparison results between the proposed method with two existing 

methods (TB and LDR) for the bus datasets in terms of the total number of sample points, average 

number of sample points, average trajectory error, total and the cost efficiency.  Here, the cost efficiency 

is defined as  

 

μ  
         

    

 
         

    

 

 

Here, e and N are defined as the average trajectory and the number of sample points, respectively. 

Also, ‘existing’ means TB algorithm for the Table 2 and LDR algorithm for the Table 3. As mentioned 

earlier, LDR employed its own error model to compute the trajectory error [18, 19]. For a fair 

comparison, we use the LDR’s error model [18, 19] when we compare our proposed algorithm with the 

LDR algorithm, since the LDR algorithm shows good performance when it uses its own error model. 

We employ δ=100m for the initial threshold value, since the previous experimental results show that the 

increase in a δ value results in better cost efficiency. Table 2 and 3 show comparison results between the 

proposed algorithm with two existing online location update algorithms (i.e., TB and LDR). Table 2 and 

3 show that the proposed online trajectory algorithm is 29% more cost efficient than the TB algorithm 

and 27% more cost efficient than the LDR algorithm. These results indicate that the proposed algorithm 

is able to achieve same average trajectory with 29% and 27% fewer number of sample points compared 

with the TB and LDR algorithms, respectively. 

 

Table 2. Comparision between the TB algorithm and the proposed algorithm for 30 bus routes 

 Trajectory based algorithm [8] Proposed algorithm 

Total # of sample points 414 537 

Average # of sample points 13.8 17.9 

Average trajectory error (e) 47.1 28.2 

Cost efficiency (μ) 
1.29 

 

Table 3. Comparison between the LDR algorithm and the proposed algorithm for 30 bus routes 

 Linear dead-reckoning algorithm [18, 19] Proposed algorithm 

Total # of sample points 739 537 

Average # of sample points 24.6 17.9 

Average trajectory error (e) 26.0 28.2 

Cost efficiency (μ) 
1.27 

5. Conclusion 

We have proposed a hybrid algorithm for online location update that efficiently combines feature point 

detection and the online-trajectory-based sampling algorithm. The first step significantly decreases 

trajectory errors by choosing corners as sample points. This is motivated by the observation that 

trajectory errors mostly occur when the mobile device suddenly changes its direction. The second step is 

designed to detect several missing sample points in case our corner-detection algorithm fails to detect 

corner points in the map image. We observe that the trajectory error decreases further after employing 

our second step. Finally, the third step eliminates redundant sample points on straight paths and 

improves cost efficiency.  

We tested our algorithm on real GPS trajectory data for various bus routes in Incheon, South Korea. 

Experimental results show that our algorithm has 28% smaller trajectory errors than the existing 

algorithms. In terms of the cost efficiency, our algorithm is approximately 29% and 27% more cost 

efficient than the TB and LDR algorithms, respectively. Experimental results show that our algorithm 

needs a few more sample points than the TB algorithm, but it is able to significantly decrease the 
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average trajectory error by choosing optimal sample point locations. The proposed algorithm requires 

27% less number of sample points with similar number of average trajectory error. We also observe that 

our proposed algorithm is robust to the choice of various threshold values. Because of its portability, we 

use the Harris corner detection algorithm to find corner points in the map image. In future work, we plan 

to enhance the first step (to find feature points) in our algorithm by adopting more robust corner 

detection algorithms from the computer vision community.  
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