• Title/Summary/Keyword: Corncob

Search Result 30, Processing Time 0.026 seconds

Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob

  • Choi, Hee-Jeong;Yu, Sung-Whan
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Using the abandoned agricultural by-product corncobs, the most commonly used methylene blue (MB) dyestuffs were removed. This experiment is very meaningful because it is the recycling of resources and the use of environmentally friendly adsorbents. According to the Hauser ratio and porosity analysis, the corncob has a good flow ability of the adsorbent material and many pores, which is very advantageous for MB adsorption. As a result of the experiment, MB concentration of less than 0.005 g/L was very efficiently removed with 10 g/L of bioadsorbent corncob and the maximum adsorption capacity of corncob for MB dyes was obtained at 417.1 mg/g. In addition, adsorption process of MB onto corncob was a physical process according to adsorption energy analysis. Corncob can efficiently and environmentally remove MB in aqueous solution, and is very cost effective and can recycle the abandoned resources.

Screening of optimum nutrient supplement of corncob as a main substrate for bottle culture of Oyster mushrooms (느타리버섯 병재배시 주재료 콘코브배지에 적합한 영양원 탐색)

  • Kim, Jeong-Han;Lee, Yun-Hae;Choi, Jong-In;Moon, Yeo-Hwang;Ju, Young-Cheoul
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.166-169
    • /
    • 2011
  • In this study we carried out to find suitable nutrient supplement of corncob as a main carbon source for bottle culture of oyster mushroom. Data from chemical analysis of Kapok seed cake(KP) treatment showed 20.2 of C/N ratio, $0.28g/cm^3$ of bulk density and 74.2% of porosity. Mushroom yield of KP treatment is 158g/bottle that is similar to control(150g/bottle). However, the price of KP is 400 won/kg that is cheaper than 550 won/kg of cotton seed cake(CS). The highest REV(relative feed value) also was observed KP treatment. A further study is required determine practical animal performance by feeding the corncob-based KP.

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production (에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색)

  • Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.294-301
    • /
    • 2012
  • In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

Enhanced Production of Cellulase-Free Thermoactive Xylanase Using Corncob by a Black Yeast, Aureobasidium pullulans CBS 135684

  • Bankeeree, Wichanee;Lotrakul, Pongtharin;Prasongsuk, Sehanat;Kim, Seung Wook;Punnapayak, Hunsa
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.822-829
    • /
    • 2016
  • Our aim was to optimize the production of cellulase-free thermoactive xylanase by Aureobasidium pullulans CBS 135684 with statistical methodology based on experimental designs. Among eleven variables, the nutrient sources that had significant effect on xylanase production were corncob, $(NH_4)_2SO_4$, xylose, $KH_2PO_4$ and tween 80, identified by the initial screening method of Plackett-Burman. The optimum concentrations of these five components were subsequently investigated using response surface methodology. The optimal concentrations ($g{\cdot}l^{-1}$) for maximum production of xylanase were corncob, 39.0; $(NH_4)_2SO_4$, 3.0; xylose, 1.8; $KH_2PO_4$ 1.4; and tween 80, 1.4, respectively. An improved xylanase yield of $8.74{\pm}0.84U{\cdot}ml^{-1}$ was obtained with optimized medium which is 2.1-fold higher production than previously obtained results ($4.10{\pm}0.10U{\cdot}ml^{-1}$) after 48 h of cultivation. In addition, the xylanase production under optimal condition reached $10.09{\pm}0.27U{\cdot}ml^{-1}$ after 72 h of cultivation.

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun;Lee, Choon Geun;Kang, Do Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1673-1680
    • /
    • 2012
  • In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

Development of a Novel Spawn (Block Spawn) of an Edible Mushroom, Pleurotus ostreatus, in Liquid Culture and its Cultivation Evaluation

  • Zhang, Wei-Rui;Liu, Sheng-Rong;Kuang, Yun-Bo;Zheng, Shi-Zhong
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Mushroom cultivation has gained increased attention in recent years. Currently, only four types of spawn, including sawdust spawn, grain spawn, liquid spawn, and stick spawn, are commonly available for mushroom cultivation. This limited spawn diversity has led to difficulty in selecting suitable inoculum materials in some cultivation. In this study, three small blocks of lignocellulosic agro-wastes and one block of a synthetic matrix were prepared as support for growing Pleurotus ostreatus in liquid medium. Mycelium-adsorbed blocks were then evaluated for their potential as block spawn for fructification. Our results indicated that the edible fungus was adsorbed and abundantly grew internally and externally on loofah sponge and synthetic polyurethane foam (PUF) supports and also has the ability to attach and grow on the surface of sugarcane bagasse and corncob supports. The mycelia of P. ostreatus adhered on corncob exhibited the highest metabolic activity, while those on the PUF showed the least activity. Mycelial extension rates of block spawns made of agro-waste materials were comparable to that of sawdust spawn, but the block spawn of PUF showed a significantly lower rate. No significant differences in cropping time and yield were observed among cultivations between experimental block spawns and sawdust spawns. Moreover, the corncob block spawn maintained its fruiting potential during an examined period of 6-month storage. The developed block spawn could be practically applied in mushroom cultivation.

Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes

  • Eisa, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The use of sustainable technologies such as supplementary cementitious materials, and/or recycled post-consumer environmental wastes is widely used in concrete industry in the last decade. This paper presents the results of a laboratory investigation of normal concrete containing sustainable technologies. Twenty one mixtures (21) were prepared with different combinations of silica fume, fly ash, olive's seed ash, and corncob ash (CCA). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Based on the results obtained in this study and the analyses conducted, the following observations were drawn: replacing the cement by olive's seed ash or CCA has a significant effect on fresh concrete workability. Olive's seed ash increased the slump by more than 200 % compared to the control mixtures. The compressive strength of mixtures containing olive's seed ash showed by 45 and 75 % decrease compared to the control mixtures. The 28 days compressive strength of mixtures produced by CCA of 10 % replacement decreased by 41 % compared to the control mixture.

Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models

  • Choi, Hee-Jeong;Lee, Seo-Yun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.271-278
    • /
    • 2019
  • Mass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel. However, the high cost of nutrients is a major limitation. In this study, corncob extract (CCE) was used as an inorganic and organic nutrient source for the mass cultivation of Chlorella vulgaris (C. vulgaris). Chemical composition analysis of CCE revealed that it contained sufficient nutrients for mixotrophic cultivation of C. vulgaris. The highest specific grow rate of C. vulgaris was obtained at pH of 7-8, temperature of $25-30^{\circ}C$, and CCE amount of 5 g/L. In the analysis using various growth models, Luong model was found to be the most suitable empirical formula for mass cultivation of C. vulgaris using CCE. Analysis of biomass and production of triacyglycerol showed that microalgae grown in CCE medium produced more than 17.23% and 3% more unsaturated fatty acids than cells cultured in Jaworski's Medium. These results suggest that growing microalgae in CCE-supplemented medium can increase lipid production. Therefore, CCE, agricultural byproduct, has potential use for mass cultivation of microalgae.

Medium composition for Flammulina velutipes bottle cultivation utilizing cassava stem chips (카사바줄기칩을 활용한 팽이버섯 병재배용 배지의 조성)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Moon, Ji-Won
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • This study was conducted to establish replacement the corncob used in winter mushroom bottle cultivation. Corncob is unstable quality in moisture content or total nitrogen(T-N) content. Fruit body yields according to the ratio of cassava stem chips mixing were compared. After treatment-1 and treatment-2, fruit body yields increased by 8.8% and 5.4% and raw material cost decreased by 7% and 19%. The results showed that cassava stem chips could replace 33% to 67% of corncob for winter mushroom bottle cultivation.

Medium development of Flammulina velutipes by using herb medicine refuse (폐 한방슬러지를 이용한 팽이버섯의 배지개발)

  • Seo, Kwon-Il;Kim, Chul-Ho;Seo, Dong-Cheol;Yee, Sung-Tae;Park, Kyung-Wuk;Lee, Chang-Yun;Lee, Sang-Won
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • pH of oriental medicine sludge was 5.3, which was similar to 5.2 of the main ingredient, corncob. Its sugar content, however, was 4.8 mg/g, which was 2.5 times higher than concorb's 1.9 mg/g. According to the addition content analysis of oriental medicine sludge by using blood agar plate, the experimental group showed much more robust growth than the control group. 10% of oriental medicine sludge was added to corncob and pine tree sawdust for test-tube culture. Then they were cultivated at $25^{\circ}C$ for 6 days after inoculating Flammulina velutipes liquid spawn. The control group and experimental group showed 2.2~3.4 and 5.8~6.4 cm hypae growths respectively. At the field test for 10% herbal medicine refuse, mushroom yield dropped by 5% compared to the control group. However, it had distinctively lower number of deformity and the 2nd grade products. An economic analysis was conducted based on the cultivation facility that produces 160,000 mushrooms per day. The analysis demonstrated that the facility can save 50,000,000 won in the starting year and 130,000,000 won in the following years from the unit cost of production excluding labour and operation cost.