Browse > Article
http://dx.doi.org/10.4014/jmb.1202.02049

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production  

Lee, Sang-Eun (Department of Biotechnology, Chungju National University)
Lee, Choon Geun (Division of Biomaterials Engineering, Kangwon National University)
Kang, Do Hyung (Korea Institute of Ocean Science and Technology)
Lee, Hyeon-Yong (Department of Teaics, Seowon University)
Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1673-1680 More about this Journal
Abstract
In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.
Keywords
Corncob; $DEAE{\cdot}HCl$ derivatization; yeast cell immobilization; ethanol production; Saccharomyces cerevisiae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23: 1813-1825.   DOI
2 Yeon, J.-H., S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21: 323-331.
3 Yu, J., X. Zhang, and T. Tan. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415-420.   DOI   ScienceOn
4 Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300.   DOI   ScienceOn
5 Kumar, S., S. P. Singh, I. M. Mishra, and D. K. Adhikari. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2: 1-6.
6 Lee, C. W. and H. N. Chang. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29: 1105-1112.   DOI   ScienceOn
7 Margaritis, A. and F. J. A. Merchant. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1: 339-393.
8 Moo-Young, M., J. Lamptey, and C. W. Robinson. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2: 541-548.   DOI   ScienceOn
9 Nagashima, M., M. Azuma, S. Noguchi, K. Inuzuka, and H. Samejima. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26: 992-997.   DOI   ScienceOn
10 Najafpour, G., H. Younesi, and K. S. K. Ismail. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260.   DOI   ScienceOn
11 Plangklang, P. and A. Reungsang. 2010. Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochem. 45: 230-238.   DOI   ScienceOn
12 Plangklang, P. and A. Reungsang. 2009. Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int. Biodeterior. Biodegrad. 63: 515-522.   DOI   ScienceOn
13 Razmovski, R. and V. Vu uroviæ. 2011. Ethanol production from sugar beet molasses by Saccharomyces cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme Microb. Technol. 48: 378-385.   DOI   ScienceOn
14 Silva, D. P., T. Brányik, G. Dragone, A. A. Vicente, J. A. Teixeira, and J. B. A. e Silva. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62: 34-41.   DOI   ScienceOn
15 Singh, N. L., P. Srivastava, and P. K. Mishra. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68: 617-623.
16 Teerakun, M., A. Reungsang, K. Srisuk, C. J. Lin, and C. H. Liao. 2010. Performance of oxygen-carbon-inducer releasing material for biodegradation of trichloroethylene, cis-dichloroethylene and vinyl chloride. Biotechnology 9: 294-303.   DOI
17 Amory, D. E. and P. G. Rouxhet. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: Chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938: 16-70.
18 Verbelen, P. J., D. P. De Schutter, F. Delvaux, K. J. Verstrepen, and F. R. Delvaux. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28: 1515-1525.   DOI   ScienceOn
19 Vijayaraghavan, K. and Y.-S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26: 266-291.   DOI   ScienceOn
20 Wada, M., J. Kato, and I. Chibata. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10: 275-287.   DOI   ScienceOn
21 Bardi, E. P. and A. A. Koutinas. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and lowtemperature wine making. J. Agric. Food Chem. 42: 221-226.   DOI   ScienceOn
22 Branyik, T., D. P. Silva, A. A. Vicente, R. Lehnert, J. B. A. e Silva, P. Dostalek, and J. A. Teixeira. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33: 1010-1018.   DOI   ScienceOn
23 Cashin, M.-M. 1996. Comparative studies of five porous supports for yeast immobilization by adsorption/attachment. J. Inst. Brew. 102: 5-10.   DOI
24 Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate Analysis; A Practical Approach. IRL Press, Oxford, UK.
25 Efremenko, E. N., N. A. Stepanova, A. B. Nikolskaya, O. V. Senko, O. V. Spiricheva, and S. D. Varfolomeev. 2011. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal. Ind. 3: 41-46.   DOI   ScienceOn
26 Kaur, P., G. S. Kocher, and R. P. Phutela. 2011. Production of tea vinegar by batch and semicontinuous fermentation. J. Food Sci. Technol. 48: 755-758.   DOI   ScienceOn
27 Genisheva, Z., S. I. Mussatto, J. M. Oliveira, and J. A. Teixeira. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34: 979-985.   DOI   ScienceOn
28 Guo, X., J. Zhou, and D. Xiao. 2010. Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl. Biochem. Biotechnol. 160: 532-538.   DOI   ScienceOn
29 Inloes, D. S., D. P. Taylor, S. N. Cohen, A. S. Michaels, and C. R. Robertson. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46: 264-278.
30 Kocher, G. S., K. L. Kalra, and R. P. Phutela. 2006. Comparative production of sugarcane vinegar by different immobilization techniques. J. Inst. Brew. 112: 264-266.   DOI   ScienceOn
31 Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377-397.   DOI   ScienceOn