• Title/Summary/Keyword: Core-wall construction

Search Result 77, Processing Time 0.026 seconds

A Feasibility Study of Green Frame(GF) for the Implementation of Low-carbon Emissions & Long-life Housing (저탄소 및 장수명 공동주택 구현을 위한 Green Frame(GF)의 타당성 분석)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Hyung-Geun;Yoon, Tae-Ho;Yune, Dai-Young;Kim, Seung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2010
  • The bearing wall apartments which occupy the majority of multi-residential apartment buildings built in Korea, are known for having limited architectural plan flexibility, posing challenges in terms of maintenance and remodeling. The economic losses and environmental issues resulting from the reconstruction of bearing wall apartments are now accumulating to the extent that they are becoming a national concern. Multi-residential apartment buildings, which are now the dominant form of residence in Korea, must accommodate diverse customer needs and changes in life style. A new concept of Rahmen structure with architectural flexibility is Green Frame. GF multi-residence housing is expected to reduce construction costs and shorten the construction schedule by overcoming the shortcomings of conventional bearing wall apartments. This goal is consistent with the national policies that target the reduction of resource and energy consumption. In addition, GF will be established as a core contributor to achieving a reduction in $CO_2$ emissions, which will enable the sustainable growth of domestic construction industry, and address the low-carbon green growth drive implemented by the government.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

A Case Study on Construction of Tunnel Crossed by Abandoned Tunnel (터널 갱구부 폐터널 교차구간 시공사례)

  • Ra, Seung-Hoon;Kim, Dong-Hyun;Lee, Sang-Pil;Lee, Hun-Yeon;Jeong, Se-Heon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.56-65
    • /
    • 2006
  • As portions(28m) of the designed tunnel was crossing the abandoned tunnel, methods for safe construction were demanded. The level of the abandoned tunnel and the designed tunnel was almost same and each tunnel was crossing at an angle of about 40 degrees. Therefore the abandoned tunnel would adversely affect the stability of the designed tunnel. Some sections of the abandoned tunnel passes through the designed tunnel wall were fully filled with tunneling spoil and cement milk grouting to increase tunnelling stability. By checking physical properties of grouting cores drilled at the cross section of the designed tunnel and the abandoned tunnel, the quality of material filled in the abandoned tunnel was confirmed. Also the stability of the designed tunnel was checked by the monitoring during excavation of the tunnel.

  • PDF

The Structural Design of "China Zun" Tower, Beijing

  • Liu, Peng;Cheng, Yu;Zhu, Yan-Song
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • The "China Zun" tower in Beijing will rise to 528 meters in height and will be the tallest building in Beijing once built. Inspired by an ancient Chinese vessel, the "Zun", the plan dimensions reduce gradually from the bottom of the tower to the waist and then expand again as it rises to form an aesthetically beautiful and unique geometry. To satisfy the structural requirement for seismic and wind resistance, the structure is a dual system composed of a perimeter mega structure made of composite mega columns, mega braces, and belt trusses, and a reinforced-concrete core with steel plate-embedded walls. Advanced parametric design technology is applied to find the most efficient outer-perimeter structure system. The seismic design basically follows a mixed empirical and performance-based methodology that was verified by a shaking table test and other specimen lab tests. The tower is now half-way through its construction.

Effect of Outriggers on Differential Column Shortening in Tall Buildings

  • Kim, Han-Soo
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Special consideration should be given to differential column shortening during the design and construction of a tall building to mitigate the adverse effects caused by such shortening. The effects of the outrigger - which is conventionally used to increase the lateral stiffness of a tall building - on the differential shortening are investigated in this study. Three analysis models, a constant-section, constant-stress, and general model, are prepared, and the differential shortenings of these models with and without the outrigger are compared. The effects of connection time, sectional area, and location of the outrigger on the differential shortening are studied. The sectional area of the outrigger shows a non-linear relation in reducing the maximum differential shortening. The optimum locations of the single and dual outriggers are investigated by an exhaustive search method, and it is confirmed that a global optimum location exists. This study shows that the outrigger can be utilized to reduce the differential shortening between the interior core wall and the perimeter columns as well as to reduce the lateral displacements due to wind or earthquake loads.

Analysis and Design of the Low Power Consumption type Micro Valve (초절전형 마이크로 밸브 해석 및 설계)

  • Kim D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.15-19
    • /
    • 2004
  • In this study, Design and simulation for low power consumption type pneumatic on-off micro valve was performed. And flow characteristics of the micro valve by stroke change was numerically investigated. As a result, it is shown that magnetic force(6.8N) is exerted enough to move poppet with 0.438mm stroke with 0.01 seconds of response time, and that there is no magnetic force emitted by yoke. Under the condition of poppet stroke smaller than about 0.4mm, dynamic pressure acts to poppet wall up to supply pressure level. But, that is decreasing to 40% when poppet stroke is 0.8mm.

  • PDF

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.