• 제목/요약/키워드: Core-shell model

검색결과 78건 처리시간 0.025초

전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화 (Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire)

  • 윤석수;조성언;김동영
    • 한국자기학회지
    • /
    • 제25권1호
    • /
    • pp.10-15
    • /
    • 2015
  • 높은 전기전도도를 가진 비자성 금속 코어와 연자성 쉘을 가진 복합와이어의 자기임피던스를 원주방향 투자율로 표현하는 모델을 맥스웰 방정식으로부터 유도하였다. Cu(직경 $100{\mu}m$)/$Ni_{80}Fe_{20}$(두께 $15{\mu}m$) 코어/쉘 복합 와이어를 전기도금방법으로 제작하였다. 코어/쉘 복합 와이어의 길이방향으로 10 kHz에서 10 MHz 범위의 주파수를 가지는 교류전류와 0 Oe에서 200 Oe 범위의 직류 자기장을 가하여 임피던스 스펙트럼의 자기장 의존성을 측정하였다. 유도된 모델을 적용하여 측정된 임피던스 스펙트럼으로부터 원주방향 복소 투자율 스펙트럼을 뽑아내었다. 뽑아낸 원주방향 복소 투자율 스펙트럼은 단일 완화주파수의 Debye 식으로 매우 잘 곡선적합되는 완화형 분산을 보였다. 원주방향 복소 투자율 스펙트럼의 자기장 의존성을 분석하여, 본 코어/쉘 복합 와이어의 경우 길이 방향의 자기이방성을 가지며 원주방향으로의 자화회전이 완화형 복소 투자율 스펙트럼에 기여하는 단일 성분이라는 것을 규명하였다.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Thermal frequency analysis of FG sandwich structure under variable temperature loading

  • Sahoo, Brundaban;Mehar, Kulmani;Sahoo, Bamadev;Sharma, Nitin;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.57-74
    • /
    • 2021
  • The thermal eigenvalue responses of the graded sandwich shell structure are evaluated numerically under the variable thermal loadings considering the temperature-dependent properties. The polynomial type rule-based sandwich panel model is derived using higher-order type kinematics considering the shear deformation in the framework of the equivalent single-layer theory. The frequency values are computed through an own home-made computer code (MATLAB environment) prepared using the finite element type higher-order formulation. The sandwich face-sheets and the metal core are discretized via isoparametric quadrilateral Lagrangian element. The model convergence is checked by solving the similar type published numerical examples in the open domain and extended for the comparison of natural frequencies to have the final confirmation of the model accuracy. Also, the influence of each variable structural parameter, i.e. the curvature ratios, core-face thickness ratios, end-support conditions, the power-law indices and sandwich types (symmetrical and unsymmetrical) on the thermal frequencies of FG sandwich curved shell panel model. The solutions are helping to bring out the necessary influence of one or more parameters on the frequencies. The effects of individual and the combined parameters as well as the temperature profiles (uniform, linear and nonlinear) are examined through several numerical examples, which affect the structural strength/stiffness values. The present study may help in designing the future graded structures which are under the influence of the variable temperature loading.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

수용액 내 폴리스티렌-폴리에틸옥사이드 이중블록공중합체 미셀 구조에 대한 소각중성자산란 연구 (Small-Angle Neutron Scattering Study of the Structure of Micelles Formed by a Polystyrene-Poly(ethylene oxide) Diblock Copolymer in Aqueous Solution)

  • 강병욱;최미주;황규희;이광희;진병석
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.485-489
    • /
    • 2009
  • 중수소화 폴리스티렌-폴리에틸렌옥사이드 이중블록공중합체(dPS-PEO)로 형성된 미셀의 구조에 대한 온도 의존성을 소각중성자산란(SANS)을 이용하여 조사하였다. SANS 데이터는 코어-쉘 모델의 form factor와 hard-sphere structure factor를 결합하여 분석하였으며, 산란 곡선 맞춤을 이용하여 미셀 응집수와 코로나 반경을 구하였다. 온도가 $25^{\circ}C$에서 $45^{\circ}C$로 증가함에 따라서 미셀 응집수는 229에서 240으로 변화하였으며, 이로 인해 코어 반경이 증가하였다. 그러나, 미셀의 쉘 두께는 6.2 nm에서 5.8 nm로 감소하였다. 이러한 구조적 변화는 온도 증가에 따라서 PEO 블록의 소수성이 증가함으로써 코로나 내의 친수성 그룹 당 수화 부피가 감소하였기 때문이다.

Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구 (Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles)

  • 안혜성;하현우;유미;최혁;김현유
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.365-369
    • /
    • 2018
  • We perform density functional theory calculations to study the CO and $O_2$ adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and $O_2$, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and $O_2$ binding energy values, which are required for facile CO oxidation. On the other hand, the $O_2$ binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than $O_2$. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Pt-based CO-tolerant CO oxidation catalyst.

반응 용기법을 이용한 InP/ZnS 양자점 합성과정에서 InP 코어의 성장기구 (Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis)

  • 서한욱;정다운;이빈;현승균;김범성
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.6-10
    • /
    • 2017
  • This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.

TX UMa의 측광학적 궤도 요소 (Photometric Orbit of TX UMa)

  • 오규동
    • Journal of Astronomy and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.41-51
    • /
    • 1986
  • 식쌍성 TX UMa의 2색 (V와 B)의 광천측광에 의한 광도곡선(Oh and Chen 1984)을Wilson and Devinney(1971) 모델에 의한 differential corrections 방법으로 분석하였다. 그결과 TX UMa의 온도가 낮고 질량이 작은 반성은 Roche lobe를 채우고 있는 준접촉 식쌍성으로 해석된다. 한펀, 이번에 얻은 TX UMa의 측광학적 궤도요소와 Hiltner( 1945)의 분광궤도요소로부터 이 별의 절대량을 구하였다. 이에 따르면, 분광형이 B8V인 주성은 core hydrogen burning의 zero age main sequence stage에 있으며 반성은 shell hydorgen burning stage 이후 contraction stage의 진화 상태에 놓여 있는 것으로 추정된다.

  • PDF

Vibration Analysis of Transformer DC bias Caused by HVDC based on EMD Reconstruction

  • Liu, Xingmou;Yang, Yongming;Huang, Yichen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.781-789
    • /
    • 2018
  • This paper proposes a new approach utilizing empirical mode decomposition (EMD) reconstruction to process vibration signals of a transformer under DC bias caused by high voltage direction transmission (HVDC), which is the potential cause of additional vibration and noise from transformer. Firstly, the Calculation Method is presented and a 3D model of transformer is simulated to analyze transformer deformation characteristic and the result indicate the main vibration is produced along axial direction of three core limbs. Vibration test system has been built and test points on the core and shell of transformer have been measured. Then, the signal reconstruction method for transformer vibration based on EMD is proposed. Through the EMD decomposition, the corrupted noise can be selectively reconstructed by the certain frequency IMFs and better vibration signals of transformer have been obtained. After EMD reconstruction, the vibrations are compared between transformer in normal work and with DC bias. When DC bias occurs, odd harmonics, vibration of core and shell, behave as a nonlinear increase and the even harmonics keep unchanged with DC current. Experiment results are provided to collaborate our theoretical analysis and to illustrate the effectiveness of the proposed EMD method.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.