• 제목/요약/키워드: Core resin

검색결과 223건 처리시간 0.023초

멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성 (Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property)

  • 임형미;윤준호;정상옥;이동진;이승호
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

저분자량 polyethylene과 urea-formaldehyde 수지를 이용한 microencapsulation에 의한 곤충 페로몬의 model 화합물들의 slow release (Slow release of microencapsulated model compounds of insect pheromone using low molecular weight polyethylene and urea-formaldehyde resin)

  • 김정한;오원택;김용진
    • Applied Biological Chemistry
    • /
    • 제34권2호
    • /
    • pp.110-116
    • /
    • 1991
  • Wall 물질로 저분자량 polyethylene(LMPE)과 urea-formaldehyde 수지를 이용하여 일반적 인 저분자 페로몬과 유사한 특성과 구조를 갖는 모델 화합물로서 citral, n-octanol, 그리고 쌀바구미, 옥수수바구미의 집합 페로몬 활성을 갖는 $({\pm})-5-hydroxy-4-methyl-heptan-3-one$을 microencapsulation하였다. Microencapsulation된 형태는 작은 입자형태의 분말상이었으며, LMPE를 wall물질로 사용한 것 보다는 urea-formaldehyde수지를 사용한 경우가 더 우수한 형태의 polymer를 얻었다. 또한 core 물질의 slow release 효과를 용매 추출법과 headspace 방법으로 측정한 결과 n-octanol과 citral은 40일 이상 그리고 5-hydroxy-4-methyl-heptan-3-one은 15일 이상 지속 효과를 보였다. 그리고 slow release되는 방식은 LMPE보다 urea-formal-dehyde 수지가 상대적으로 초기 감소 경향이 완만하며 core 물질을 일정양씩 더 지속적으로 휘발시켰다.

  • PDF

고무상입자가 치과용 복합레진의 물리적 성질에 미치는 영향 (EFFECT OF CORE-SHELL PARTICLES ON PHYSICAL PROPERTIES OF DENTAL COMPOSITES)

  • 최경규
    • Restorative Dentistry and Endodontics
    • /
    • 제23권2호
    • /
    • pp.690-700
    • /
    • 1998
  • Rubber-toughened particles which are used in the field of chemical engineering are used to increase the fracture toughness of thermoset resin. The application of Core-Shell particles, one of rubber-toughened particles, as a filler for dental composite or restoration have not been examined. The purpose of this study was to evaluate possible use of Core-Shell particles for dental composite, and the hypothesis was that additional toughening mechanisms are activated by the addition of Core-Shell particles. After blending 50vol% quartz with Bis-GMA/TEGDMA resin matrix, the experimental resins were made by the addition of Core-Shell particles with varied content level as 0, 2.5, 5, 7.5, 10, 12.5, 15, and 20wt%. Fracture toughness was determined on three-point bending specimen with single-edge notch according to ASTM-E 399. Also, flexural properties, that is, strength and modulus were measured by three-point bending testing. Fractogragh of fracture toughness specimen was observed using SEM (JEOL 6400 SEM, MA). The following results from this study were obtained ; 1. Fracture toughness of composite resin added 2.5wt% Core-Shell particles was significantly higher than control group ($p{\leq}0.05$). 2. Flexural properties were decreased with increasing Core-Shell particle content, which showed a correlation statistically ($p{\leq}0.05$). 3. A toughening mechanism such as lamination and microcrack was observed in specimen determined high fracture toughness. 4. The dispersion of Core-Shell itself and quartz filler particles was limited present high content of Core-Shell particles, which decreased a resulting mechanical properties of composites. These results suggest that adequate Core-Shell particles can be used to enhance mechanical properties included toughening for dental composites.

  • PDF

자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자 (Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting)

  • 김기준
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.185-191
    • /
    • 2021
  • 본 자동차 실린더 블록 주조시 실린더 보어 내에서 발생하는 열로부터 구조적 변형을 방지하는데 필요한 워터 자켓 코어용 주물사의 특성을 분석하였다. 샌드 코어의 특성평가를 위하여 인장강도 시험기, 입도 지수(AFS-GFN), 광학현미경을 사용하였다. 주물사의 SiO2 함량이 높으면 고온팽창에 의한 치수 불량, 베이닝 불량이 발생하며, 너무 낮으면 코어 파손, 기포, 화학적 소착 등이 발생하였다. 입도 지수와 입형이 코어강도와 레진 소비량에 영향을 미치고, 이로 인한 불량 유형 변화가 발생하였다. 건조사가 염분이 높을수록 코어 강도는 감소하며, 알칼리성일수록 코어 강도가 감소하였다. 레진 함량 1.6~1.8%에서 1시간 경화 이후에 코어 강도 증가는 대략 최대를 보였다.

사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구 (A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials)

  • 신성현;정의철;김미애;채보혜;손정언;김상윤;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

In-Ceram 코아의 표면처리 방법에 따른 레진시멘트와의 전단결합강도에 관한 연구 (THE INFLUENCE OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF RESIN CEMENTS TO IN-CERAM CORE)

  • 윤정태;이선형;양재호
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.129-146
    • /
    • 2000
  • An increasing demand for esthetic restorations has led to the development of new ceramic systems. In-Ceram, a glass-infiltrated alumina ceramic has three to few times greater flexural strength than other ceramic glass material. Because of its high strength, In-Ceram has been suggested as inlay, crown, laminate veneer and core material for resin bonded fixed partial dentures. This clinical application requires a stable resin bond to In-Ceram core. The purpose of this study was to evaluate the shear bond strength between In-Ceram core and resin cements according to various surface treatments and storage conditions. The surface of each In-Ceram core sample was subjected to one of the following treatments and then bonded to Panavia 21 or Variolink II resin cement. ; (1) sandblasting with $110{\mu}m$ aluminum oxide powder, (2) sandblasting and silanization, (3) sandblasting and Siloc treatment, (4) sandblasting and Targis link application. Each of eight bonding groups was tested in shear bond strengths after the following storage times and thermocycling. ; A) 24 hours storage in distilled water at $37^{\circ}C$, B) 5 weeks storage in distilled water at $37^{\circ}C$ C) 5 weeks storage in distilled water at $37^{\circ}C$ and thermocycled 2,000 thormocycling for every 10 days(totally 10,000 thermocycting) in $5^{\circ}C-55^{\circ}C$ bath. The bond failure modes were observed with scanning electron microscope(SEM). The results were as fellows : 1 The shear bond strengths of sandblasting group were significantly lesser than the other groups after 24 hours water storage. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). The shear bond strengths showed a tendency to decrease in Variolink II bonding groups and to increase in Panavia 21 bonding groups. 3. After thermocycling, the shear bond strengths of all groups were significantly decreased(p<0.01) and Targis link group exhibited significantly greater strengths than the other groups(p<0.05). 4. Panavia 21 bonding groups exhibited significantly greater bonding strengths in sandblasting group(p<0.01) and silane group(p<0.05) than Variolink II bonding groups. 5. In observation of bond failure modes, Targis link group showed cohesive failure in resin part and silane group and Siloc group showed complex failure and sandblasting group showed adhesive failure between In-Ceram and resin.

  • PDF

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

이원중합형 코어 축조용 복합레진의 결합강도에 대한 NaOCI의 영향에 대한 연구 (Influence of Sodium Hypochlorite on Bond Strength of Dual-cured Core Build-up Resin Composite)

  • 이준봉;박종덕;권수미;유미경;이광원
    • 구강회복응용과학지
    • /
    • 제23권4호
    • /
    • pp.283-292
    • /
    • 2007
  • Two-step or one-step bonding systems generally inhibit curing process of dual-cured core build-up resin composite for their adhesive acidity. In addition this dual-cured core build-up resin composite can be applied to dentin of pulp chamber and root at the time that complete the endodontic treatment. The purpose of this investigation was to determine the influence of sodium hypochlorite on rnicrotensile bond strength of dual-cured core build-up resin composite. Extracted human molars were horizontally sectioned with 1mm thickness using low speed diamond saw. After the sectioned specimens were divided into 8 groups, adhesive systems (Clearfil SE-Bond, Prime&Bond NT[2-step, 1-step], Adper Prompt L-Pop) were then applied with or without sodium hypochlorite pretreatment. The treated specimen was filled with dual-cured core build-up resin composite (Luxacore, DMG corp., German). Then light cured for 40 seconds and soaked in $37^{\circ}C$ water bath for 24 hours. After the treated specimen was grinded with 1mm width and measured rnicrotensile bond strength by testing machine. Additionally 8 teeth were prepared for SEM evaluation. The results were as follows. : NaOCl treated groups generally had lower rnicrotensile bond strength but did not show any difference statistically except Adper Prompt L-Pop. When the teeth were treated by NaOCl, though the difference of applied adhesive system, it had no statistically significant difference within the NaOCl treated groups except the relation of between ClearFil SE-Bond adhesive system and Adper Prompt L-Pop adhesive system. In the SEM evaluation, NaOCl treated groups presented relatively long resin tags and incomplete hybrid layer formation generally.

합판용 페놀수지 접착제의 속경화 (Fast-Curing of Phenol·Formaldehyde Resin Adhesives for Plywood)

  • 노정관
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.33-39
    • /
    • 1995
  • To accelerate the cure of phenolic resin adhesives for plywood, the complexation with melamine resin and the addition of cure-accelerating agents were discussed. The hot-pressing temperature and time of phenol resin could be decreased by complexation with melamine resin. but the wet glue-joints strength of phenol melamine resin was lower than that of ordinary phenol resin in case of plywood using spruce veneer at core layer. Among the tested cure-accelerating agents. the sodium carbonate showed the greatest effect on shortening gelation time of phenolic resin. In addition, in the manufacturing scale test, the hot-pressing time of phenol resin with the addition of 5 parts sodium carbonate could be shortened about 20% compared with ordinary phenol resin which had same glue-joints properties.

  • PDF