Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.2.185

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting  

Kim, Ki-Jun (Material Production Dep'2 / Ulsan Plant, Hyundai Motor Group)
Publication Information
Journal of the Korea Convergence Society / v.12, no.2, 2021 , pp. 185-191 More about this Journal
Abstract
The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.
Keywords
Sand Core; Water Jacket; Cylinder Blocks; Grain Fineness Number; Core Tensile Strength; Curable Resin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. J. Stauder, H. Kerber & P. Schumacher. (2016). Foundry sand core property assessment by 3-point bending test evaluation. Journal of Materials Processing Technology, 237, November, 188-196. DOI: 10.1016/j.jmatprotec.2016.06.010   DOI
2 K. H. Ryu & J. H. Seo. (2017). Utilization of 3D CAD and 3D Printer and UV Curavle resin Casting Defect. Journal of the Korea Convergence Society, 8(3), 169-176. DOI: 10.15207/jkcs.2017.8.3.169   DOI
3 H. Bargaoui, F. Azzouz, D. Thibault & G. Cailletaud (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of materials processing technology, 246, 30-41. DOI: 10.1016/j.jmatprotec.2017.03.002   DOI
4 S. Gandhi, A. Sachdeva & A. Gupta (2019). Reduction of rejection of cylinder blocks in a casting unit: A six sigma DMAIC perspective. Journal of Project Management, 4(2), 81-96. DOI: 10.5267/j.jpm.2019.1.002   DOI
5 H. Khandelwal & B. Ravi. (2015). Effect of binder composition on the shrinkage of chemically bonded sand cores. Materials and Manufacturing Processes, 30(12), 1465-1470. DOI: 10.1080/10426914.2014.994779   DOI
6 D. Chemezov. (2018). Condition of a casting material of a cylinder block of a car after crystallization in a sand mold. ISJ Theoretical & Applied Science, 07 (63), 145-147. DOI: 10.15863/TAS.2018.07.63.22   DOI
7 L. Song, W. H. Liu, Y. M. Li & F. H. Xin. (2019). Humidity-resistant inorganic binder for sand core making in foundry practice. China foundry, 16(4), 267-271. DOI: 10.1007/s41230-019-8169-8   DOI
8 C. J. Ni, G. C. Lu, T. Jing & J. J. Wu. (2017). Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation. China Foundry, 14(2), 121-127. DOI: 10.1007/s41230-017-6118-y   DOI
9 M. Schneider, T. Hofmann, H. Andra, P. Lechner, F. Ettemeyer, W. Volk & H. Steeb (2018). Modelling the microstructure and computing effective elastic properties of sand core materials. International Journal of Solids and Structures, 143, 1-17. DOI: 10.1016/j.ijsolstr.2018.02.008   DOI
10 H. Khandelwal & B. Ravi. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes, 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007   DOI
11 E. Rodriguez, A. Perez, R. D. Mercado-Solis, V. T. Abraham, O. Jimenez, M. Flores & J. Ibarra. (2019). Erosion problem in tool steel using cold box core-making process. China Foundry, 16(3), 204-210. DOI: 10.1007/s41230-019-8156-0   DOI
12 G. R. Chate, G. M. Patel, R. M. Kulkarni, P. Vernekar, A. S. Deshpande & M. B. Parappagoudar. (2018). Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting. Silicon, 10(5), 1921-1936. DOI: 10.1007/s12633-017-9705-z   DOI
13 F. Ettemeyer, P. Lechner, T. Hofmann, H. Andra, M. Schneider, D. Grund & D. Gunther. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. International Journal of Solids and Structures, 188, 155-168. DOI: 10.1016/j.ijsolstr.2019.09.014   DOI
14 M. M. Khan, S. M. Mahajani, G. N. Jadhav, R. Vishwakarma, V. Malgaonkar & S. Mandre. (2020). Mechanical and thermal methods for reclamation of waste foundry sand. Journal of Environmental Management, 111628. DOI: 10.1016/j.jenvman.2020.111628   DOI
15 H. Khandelwal, & B. Ravi. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes, 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007   DOI
16 E. C. Silva, I. Masiero & W. L. Guesser. (2020). Comparing Sands From Different Reclamation Processes for Use in the Core Room of Cylinder Heads and Cylinder Blocks Production. International Journal of Metalcasting, 1-11. DOI: 10.1007/s40962-019-00400-6   DOI