DOI QR코드

DOI QR Code

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting

자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자

  • Kim, Ki-Jun (Material Production Dep'2 / Ulsan Plant, Hyundai Motor Group)
  • Received : 2020.12.29
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.

본 자동차 실린더 블록 주조시 실린더 보어 내에서 발생하는 열로부터 구조적 변형을 방지하는데 필요한 워터 자켓 코어용 주물사의 특성을 분석하였다. 샌드 코어의 특성평가를 위하여 인장강도 시험기, 입도 지수(AFS-GFN), 광학현미경을 사용하였다. 주물사의 SiO2 함량이 높으면 고온팽창에 의한 치수 불량, 베이닝 불량이 발생하며, 너무 낮으면 코어 파손, 기포, 화학적 소착 등이 발생하였다. 입도 지수와 입형이 코어강도와 레진 소비량에 영향을 미치고, 이로 인한 불량 유형 변화가 발생하였다. 건조사가 염분이 높을수록 코어 강도는 감소하며, 알칼리성일수록 코어 강도가 감소하였다. 레진 함량 1.6~1.8%에서 1시간 경화 이후에 코어 강도 증가는 대략 최대를 보였다.

Keywords

References

  1. B. J. Stauder, H. Kerber & P. Schumacher. (2016). Foundry sand core property assessment by 3-point bending test evaluation. Journal of Materials Processing Technology, 237, November, 188-196. DOI: 10.1016/j.jmatprotec.2016.06.010
  2. K. H. Ryu & J. H. Seo. (2017). Utilization of 3D CAD and 3D Printer and UV Curavle resin Casting Defect. Journal of the Korea Convergence Society, 8(3), 169-176. DOI: 10.15207/jkcs.2017.8.3.169
  3. H. Bargaoui, F. Azzouz, D. Thibault & G. Cailletaud (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of materials processing technology, 246, 30-41. DOI: 10.1016/j.jmatprotec.2017.03.002
  4. S. Gandhi, A. Sachdeva & A. Gupta (2019). Reduction of rejection of cylinder blocks in a casting unit: A six sigma DMAIC perspective. Journal of Project Management, 4(2), 81-96. DOI: 10.5267/j.jpm.2019.1.002
  5. H. Khandelwal & B. Ravi. (2015). Effect of binder composition on the shrinkage of chemically bonded sand cores. Materials and Manufacturing Processes, 30(12), 1465-1470. DOI: 10.1080/10426914.2014.994779
  6. D. Chemezov. (2018). Condition of a casting material of a cylinder block of a car after crystallization in a sand mold. ISJ Theoretical & Applied Science, 07 (63), 145-147. DOI: 10.15863/TAS.2018.07.63.22
  7. L. Song, W. H. Liu, Y. M. Li & F. H. Xin. (2019). Humidity-resistant inorganic binder for sand core making in foundry practice. China foundry, 16(4), 267-271. DOI: 10.1007/s41230-019-8169-8
  8. C. J. Ni, G. C. Lu, T. Jing & J. J. Wu. (2017). Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation. China Foundry, 14(2), 121-127. DOI: 10.1007/s41230-017-6118-y
  9. M. Schneider, T. Hofmann, H. Andra, P. Lechner, F. Ettemeyer, W. Volk & H. Steeb (2018). Modelling the microstructure and computing effective elastic properties of sand core materials. International Journal of Solids and Structures, 143, 1-17. DOI: 10.1016/j.ijsolstr.2018.02.008
  10. H. Khandelwal & B. Ravi. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes, 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007
  11. E. Rodriguez, A. Perez, R. D. Mercado-Solis, V. T. Abraham, O. Jimenez, M. Flores & J. Ibarra. (2019). Erosion problem in tool steel using cold box core-making process. China Foundry, 16(3), 204-210. DOI: 10.1007/s41230-019-8156-0
  12. G. R. Chate, G. M. Patel, R. M. Kulkarni, P. Vernekar, A. S. Deshpande & M. B. Parappagoudar. (2018). Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting. Silicon, 10(5), 1921-1936. DOI: 10.1007/s12633-017-9705-z
  13. F. Ettemeyer, P. Lechner, T. Hofmann, H. Andra, M. Schneider, D. Grund & D. Gunther. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. International Journal of Solids and Structures, 188, 155-168. DOI: 10.1016/j.ijsolstr.2019.09.014
  14. M. M. Khan, S. M. Mahajani, G. N. Jadhav, R. Vishwakarma, V. Malgaonkar & S. Mandre. (2020). Mechanical and thermal methods for reclamation of waste foundry sand. Journal of Environmental Management, 111628. DOI: 10.1016/j.jenvman.2020.111628
  15. E. C. Silva, I. Masiero & W. L. Guesser. (2020). Comparing Sands From Different Reclamation Processes for Use in the Core Room of Cylinder Heads and Cylinder Blocks Production. International Journal of Metalcasting, 1-11. DOI: 10.1007/s40962-019-00400-6
  16. H. Khandelwal, & B. Ravi. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes, 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007