• Title/Summary/Keyword: Core degradation

Search Result 219, Processing Time 0.027 seconds

Occurrence of butyltin compounds in marine environment of Gwangyang Bay, Korea

  • Park, Hee-Gu;Kim, Sang-Soo;Moon, Hyo-Bang;Gu, Bon-Kyu
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.793-800
    • /
    • 2002
  • Butyltin (BT) compounds were measured in seawater, sediment, sediment core, settling solids, and plankton from Gwangyang Bay in 2001, Tributyltin (TBT) was detected in seawater from 1 out of the 7 seawater sampling sites and in sediment from 18 out of the 35 sediment sampling sites. The highest concentration of TBT was found in the sediment from the site near Yeosu Harbor (53 ng Sn/g dry wt), acting as the point source for TBT The mean concentrations of TBT were in the order of plankton> settling solids> sediment. The degradation indexes ([DBT]+[MBT]/[TBT]) for the plankton were less than 1, indicating the possibility of recent inputs of TBT. The indexes for the sediment and settling solids ranged from 1.14 to 8.73. The composition of the BT compounds found in the settling solids was similar to that found in the sediment. The vertical profile of the total BT compounds in the sediment was characterized by an abrupt decline from the surface. However, no butyltin compounds appeared below a depth of 10 cm, corresponding to the 1980s. Accordingly, the current results demonstrated that the levels of all butyltin species in the environment of Gwangyang Bay were relatively lower than those in other polluted coastal areas. The vertical profile also suggested a fairly recent history for the down-core.

Analysis on the Temperature of Multi-core Processors according to Placement of Functional Units and L2 Cache (코어 내부 구성요소와 L2 캐쉬의 배치 관계에 따른 멀티코어 프로세서의 온도 분석)

  • Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • As cores in multi-core processors are integrated in a single chip, power density increased considerably, resulting in high temperature. For this reason, many research groups have focused on the techniques to solve thermal problems. In general, the approaches using mechanical cooling system or DTM(Dynamic Thermal Management) have been used to reduce the temperature in the microprocessors. However, existing approaches cannot solve thermal problems due to high cost and performance degradation. However, floorplan scheme does not require extra cooling cost and performance degradation. In this paper, we propose the diverse floorplan schemes in order to alleviate the thermal problem caused by the hottest unit in multi-core processors. Simulation results show that the peak temperature can be reduced efficiently when the hottest unit is located near to L2 cache. Compared to baseline floorplan, the peak temperature of core-central and core-edge are decreased by $8.04^{\circ}C$, $8.05^{\circ}C$ on average, respectively.

Degradation Kinetics of Three Veterinary Antibiotics in Composted and Stockpiled Manure

  • Kim, Sung-Chul;Yang, Jae-E.;Ok, Yong-Sik;Jung, Doug-Young;Carlson, Kenneth
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Two typical animal waste management practices, composting and stockpiling, were evaluated for their effect on the degradation of three veterinary antibiotics (VAs), chlortetracycline (CTC), tylosin (TYL), and monensin (MNS). The VAs were applied to horse manure plots subject to composting or stockpiling, and core samples were collected over a period of time. Selected buffer solutions were used to extract the VAs and analysis for concentration was conducted with solid phase extraction (SPE) followed by high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) technique. The VAs demonstrated rapid dissipation within ten days followed by a gradual decrease in concentration until the end of the experimental period (141 days). All three VAs degraded more rapidly in the composting samples than in the stockpiling samples, particularly between 20 and 60 days of the observation period. Degradation of the three VAs generally followed a first-order kinetic model, and a fitted model with a calculated rate constant was determined for each treatment. TYL in composting showed the fastest degradation, with a calculated rate constant of $0.91day^{-1}$; the slowest degradation was exhibited by MNS in stockpiling, with rate constant of $0.17day^{-1}$. Calculated correlation coefficients ranged from 0.89 to 0.96, indicating a strong correlation between measured concentrations and fitted values in this study. Although concentration of TYL in composting treatment showed below detection limit during the test period, this study suggests that composting can reduce animal waste contaminants prior to field application as fertilizer.

Study on analog-based ex-core neutron flux monitoring systems of Korean nuclear power plants for digitization

  • Kim, Young Baik;Vista, Felipe P. IV;Chong, Kil To
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2237-2250
    • /
    • 2021
  • The analog-based Ex-core Neutron Flux Monitoring System (ENFMS) in Korean Nuclear Power Plants (NPPs) has been performing its intended functions successfully for a long time. On the other hand, the primary concern with the extended use of analog systems is the aging effect, such as mechanical failures, environmental degradation, and obsolescence. The transition to a digital-based Man-Machine Interface Systems (MMIS) in Korea and other countries has been accelerating, but some systems are still analog-based IC systems, such as the ENFMS in APR1400 NPPs. Digitalized ENFMS can become a reality using computers and microprocessors owing to the progress in digital electronics and information technology. This paper presents the result of the first phase of the research on the digitalization of the ENFMS signal processing electronics for NPPs operated or produced in Korea. It has two main parts: (1) review engineering bases of ex-core neutron flux monitoring system, including nuclear engineering, instrumentation techniques, and analog and digital signal processing techniques, and (2) analysis of analog signal processing electronics of ENFMS for OPR1000 and APR1400 power plants. They are prerequisite to the second phase of the research which is the detailed implementation of the digitalization.

Low-Complexity HPGA Decoding Methods for Core-Layer Signal in LDM-MIMO ATSC 3.0 Broadcasting Systems (LDM-MIMO ATSC 3.0 방송 시스템의 Core-Layer 신호를 위한 저복잡도 HPGA 복호 기법들)

  • Kim, Seunghyeon;Shang, Yulong;Jung, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.146-149
    • /
    • 2022
  • In this letter, we propose low-complexity Hybrid-Partial-Gaussian-Approximation (HPGA) decoding methods for core-layer signal of Layered-Division-Multiplexing Multiple-Inputs-Multiple- Outputs ATSC 3.0 broadcasting systems. The proposed HPGA decoding methods have an advantage of being able to greatly reduce decoding complexity without significant performance degradation compared to a conventional PGA method, by selectively using existing GA and PGA methods according to a received injection-level at an each receive antenna.

Comparison of Carbon Stock Between Forest Edge and Core by Using Connectivity Analysis (연결성 분석을 활용한 산림의 주연부와 내부의 탄소저장량 비교)

  • Sung, Sun-Yong;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • Forest ecosystem is considered as an important stepping stone to minimize the impact of climate change. However, the rapid urbanization has caused fragmentation of forest ecosystem. The fragmentation of forest patch results in edge effect which brings about adverse impacts on forest function and structure. Degradation of forest ecosystem decreases carbon sequestration because edge effect reduces productivity. Therefore, we analyzed the impact of forest edge effect on forest ecosystem carbon stock change in Seongnam-si, Gyeonggi-do. We used connectivity analysis to determine forest edge and core area. The field study sites were selected with considering forest age, density, class and soil type. Secondly, forest carbon stock was calculated with allometric equation. The soil carbon stock was derived from Walkely-Black method. Lastly, Mann-Whitney test was conducted to validate differences between carbon stock in edge and core area. As a result of study, the connectivity analysis was effective to determine forest edge and core. The core and edge of forest patch showed different composition of tree species and soil properties. Carbon stock per tree in the edge area was lower than that in the core area. However, the difference of soil organic carbon content between the edge and core were relatively small. This assessment can be applied for the conservation of forest patch as well as quantitative assessment on the forest carbon stock change caused by fragmentation.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Designing of a Novel Core-Shell-Structured Co-free Cathode Material with Enhanced Thermal and Structural Stability for Lithium Ion Batteries

  • Shin, Ji-Woong;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.172-176
    • /
    • 2019
  • The first commercialized cathode material, $LiCoO_2$, suffers from disadvantages such as high cost and toxicity and also possesses safety problems. The nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material, used as an alternative to $LiCoO_2$, has highly reversible capacity and high energy density. So, the nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material is widely used as an alternative to $LiCoO_2$ due to its highly reversible capacity and high energy density. However, $LiNi_{0.9}Mn_{0.1}O_2$ has several disadvantages as well, such as poor cycle performance and poor thermal instability. To address these problems, we synthesized a new material, $LiNi_{0.5}Mn_{0.5}O_2$, as a shell on the surface of a core to suppress the surface degradation. The new material showed high structural and thermal stabilities and could also maintain a high capacity. The capacity retention of the core-shell cathode (87.7%) was better than that of the core cathode (76.9%) after 50 cycles. Analysis using differential scanning calorimetry revealed that the heat generation in the core-shell cathode ($65.9Jg^{-1}$) was lower than that in the core cathode ($559.7Jg^{-1}$).

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Hierarchical Mesh-based Multicast Routing Protocol for Ad-Hoc Networks (에드 혹 네트워크를 위한 계층적인 메쉬 기반 멀티캐스트 라우팅 프로토콜)

  • Kim, Ye-Kyung;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.586-601
    • /
    • 2001
  • We propose a mesh based multicast routing protocol referred to as HMMRP for ad-hoc networks. In HMMRP, a limited number of sources are selected as core sources, and the rest of the sources of a multicast group are connected to one of those core sources. The sources and the receivers of a multicast group are also connected through per source trees. In HMMRP, the data delivery mesh of a multicast group are composed of the nodes on these paths, and are reconfigured at regular intervals. Furthermore, each mesh member that lies on the paths between the sources and the core sources as well as be-tween the core sources and the receivers keeps checking if there is a symptom of mesh separation around itself. When a mesh member finds such symptom, it tries to patch itself to the mesh with a local flooding. As a result, the part of the data delivery mesh on those paths are kept connected with a lot higher probability than the rest of the data delivery mesh. That is, for a certain source receiver pair, it is very likely that at least there exists a data delivery path that route from the source to a core source and then to the receiver. Therefore, HMMRP may provide very high data delivery ratio without frequent entire data delivery mesh reconfiguration even when the nodal mobility is high. Simulation results show that HMMRP shows relatively little performance degradation with respect to mobility. Furthermore, the performance degradation with respect to mobility is even smaller when the size of the multicast group becomes larger.

  • PDF