• Title/Summary/Keyword: Core cell

Search Result 632, Processing Time 0.022 seconds

Parallelizing Feature Point Extraction in the Multi-Core Environment for Reducing Panorama Image Generation Time (파노라마 이미지 생성시간을 단축하기 위한 멀티코어 환경에서 특징점 추출 병렬화)

  • Kim, Geon-Ho;Choi, Tai-Ho;Chung, Hee-Jin;Kwon, Bom-Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.331-335
    • /
    • 2008
  • In this paper, we parallelized a feature point extraction algorithm to reduce panorama image generation time in multi-core environment. While we compose a panorama image with several images, the step to extract feature points of each picture is needed to find overlapped region of pictures. To perform rapidly feature extraction stage which requires much calculation, we developed a parallel algorithm to extract feature points and examined the performance using CBE(Cell Broadband Engine) which is asymmetric multi-core architecture. As a result of the exam, the algorithm we proposed has a property of linear scalability-the performance is increased in proportion the number of processors utilized. In this paper, we will suggest how Image processing operation can make high performance result in multi-core environment.

Implementation of a 32-Bit RISC Core for Multimedia Portable Terminals (멀티미디어 휴대 단말기용 32 비트 RISC 코어 구현)

  • 정갑천;기용철;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.226-229
    • /
    • 2000
  • In this paper, we describe implementation of 32-Bit RISC Core for portable communication/information equipment, such as cellular telephones and personal digital assistants, notebook, etc. The RISC core implements the ARM$\^$R/V4 instruction set on the basis of low power techniques in architecture level and logic level. It operates with 5-stage pipeline, and has harvard architecture to increase execution speed. The processor is modeled and simulated in RTL level using VHDL. Behavioral Cache and MMU are added to the VHDL model for instruction level verification of the processor. The core is implemented using Mentor P'||'&'||'R tools with IDEC C-631 Cell library of 0.6$\mu\textrm{m}$ CMOS 1-poly 3-metal CMOS technology.

  • PDF

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

Determination of Chromium(VI) and Copper(II) in Organic Solvent - Solution by Liquid Core Optical Fiber Spectrophotometry

  • Wang, JuFang;Fen, Minzhao;Wei, Wang;He, Qushe;Wu, Guanyan
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.457-460
    • /
    • 1995
  • A new hollow fiber filled with the lower refractive index liquid as core constructs a liquid core optical fiber(LCOF). The LCOF have been used as colorimetric cell to determine elements Cr and Cu in the presence of 70%- 50% ethanol or 50% dioxane aqueous solution, based on colored complex of Chromium(VI) with Diphenycarbazid(DPC) and copper with Chromaurd S(CAS) respectively. The sensitivity (1/ng/ml) of calibration curve of Cr and Cu are 0.052, 0.017 over the range 0 - 25, 0 - 24(ng/ml) respectively. The Cr in the animal gum and Nation Standard of China are determined with recoveries of 94 - 102%.

  • PDF

Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell According to the Fabrication of the Blocking Layer (Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석)

  • Kim, Jin-Kyoung;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Prabarkar, Prabarkar;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.85-88
    • /
    • 2012
  • DSCs are based on a dye-adsorbed porous $TiO_2$ layer as a photo electrode [1]. Under the illumination, dye molecules are excited and electrons are produced. The injected electrons in the conduction band of $TiO_2$ may recombine with the electrolyte. To obtain high performance DSCs, it is essential to retard the recombination. The charge recombination can be reduced by forming core-shell structure. In this work, we investigated the core-shell structure with $Al_2O_3$ and MgO coating layer on the porous $TiO_2$ layer. We confirmed the photovoltaic properties by I-V characteristics. The current and the efficiency was improved. In addition to, Through decrease in the width of EIS arc, which is the sum of the interfacial charge transfer resistances of both electrodes, we can be indicated that the block effect.

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks

  • Choi, Taesang;Kim, TaeYeon;Tavernier, Wouter;Korvala, Aki;Pajunpaa, Jussi
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.72-88
    • /
    • 2018
  • In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20 Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Design & Fabrication of Ferrite-core Loop Antenna for Portable Radio Receiver (휴대형 무선 단말을 위한 FERRITE-CORE LOOP ATENNA의 설계 제작)

  • 권원현;천경준;허선종;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.918-926
    • /
    • 1992
  • In this paper, ferrite-core loop antenna for portable radio receiver is designed and its characteristics are analyzed. Antenna is fabricated by inserting the ferrite core inside the planar conductor loop$(10{\times}6{\times}15mm^3)$. Bandwidth and Q factor of fabricated antenna measure 0.55 MHz and 280, respectively. These results show remarkable enhancement compared to the conventional loop antenna having the same physical dimension(BW=1.9MHz, Q=8.14). Experimental results show that the relative gain of the fabricated antenna is about 11 dB higher than that of the conventional antenna.

  • PDF

Upstream paths for Hippo signaling in Drosophila organ development

  • Choi, Kwang-Wook
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.134-142
    • /
    • 2018
  • Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.