DOI QR코드

DOI QR Code

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Received : 2014.02.25
  • Accepted : 2014.06.16
  • Published : 2014.10.25

Abstract

A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

Keywords

References

  1. Idaho National Laboratory, "Summary for the Next Generation Nuclear Plant Project in Review," INL/EXT-10-19142, Revision 1 (2010).
  2. J. Chang, Y. W. Kim, K. Y. Lee, Y. W. Lee, W. J. Lee, J. M. Noh, M. H. Kim, H. S. Lim, Y. J. Shin, K. K. Bae, and K. D. Jung, "A Study of a Nuclear Hydrogen Production Demonstration Plant," Nucl. Eng. Technol., vol. 39, no. 2, pp. 111-122 (2007). https://doi.org/10.5516/NET.2007.39.2.111
  3. J. M. Noh et al., "Development of Very High Temperature Reactor Design Technology," KAERI/RR-3462/2011 (Written in Korean), Korea Atomic Energy Research Institute (2012).
  4. C. K. Jo, H. S. Lim, and J. M. Noh, "Preconceptual Designs of the 200MWth Prism and Pebble-bed Type VHTR Cores," PHYSOR 2008, Interlaken, Switzerland, Sep. 14-19, 2008.
  5. A. J. Neylan, D. V. Graf, and A. C. Millunzi, "The Modular High Temperature Gas-Cooled Reactor (MHTGR) in the U.S.," Nucl. Eng. Des., vol. 109, pp. 99-105 (1988). https://doi.org/10.1016/0029-5493(88)90146-X
  6. S. Shiozawa, S. Fujikawa, T. Iyoku, K. Kunitomi, and Y. Tachibana, "Overview of HTTR design features," Nucl. Eng. Des., vol. 233, pp. 11-21 (2004). https://doi.org/10.1016/j.nucengdes.2004.07.016
  7. G. Melese and R. Katz, Thermal and Flow Design of Helium-Cooled Reactors, American Nuclear Society, Illinois USA (1984).
  8. S. Maruyama, N. Fujimoto, Y. Sudo, Y. Kiso, H. Hayakawa, "Fuel Temperature Analysis Method for Channel-Blockage Accident in HTTR," Nucl. Eng. Des., vol. 150, pp. 69-80 (1994). https://doi.org/10.1016/0029-5493(94)90052-3
  9. N. I. Tak, M. H. Kim, H. S. Lim, and J. M. Noh, "A Practical Method for Whole Core Thermal Analysis of Prismatic Gas-Cooled Reactor", Nucl. Tech., vol. 177, pp. 352-365 (2012). https://doi.org/10.13182/NT12-A13480
  10. ANSYS Inc., http://www.ansys.com (2014).
  11. CD-adapco, http://www.cd-adapco.com (2014).
  12. N. I. Tak, M. H. Kim, and W. J. Lee," Numerical Investigation of a Heat Transfer within the Prismatic Fuel Assembly of a Very High Temperature Reactor," Ann. Nucl. Energy, vol. 35, pp. 1892-1899 (2008). https://doi.org/10.1016/j.anucene.2008.04.005
  13. M. H. Kim, N. I. Tak, and J. M. Noh, "CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core," Transactions of the Korean Nuclear Society Autumn Meeting, Jeju, Korea, Oct. 21-22, 2010.
  14. O. Cioni, M. Marchand, G. Geffraye, and F. Ducros, "3D Thermal-Hydraulic Calculations of a Modular Block-type HTR Core," Nucl. Eng. Des., vol. 236, pp. 565-573 (2006). https://doi.org/10.1016/j.nucengdes.2005.10.024
  15. W. D. Pointer and J. W. Thomas, "Steady-State, Whole-Core Prismatic VHTR Simulation Including Core Bypass," Proceedings of ICAPP '10, San Diego, CA, USA, June 13-17, 2010, Paper 10310.
  16. W. J. Lee, J. J. Jeong, S.W. Lee and J. Chang, "Development of MARS-GCR/V1 for Thermal-Hydraulic Safety Analysis of Gas-Cooled Reactor Systems," Nucl. Eng. Technol., vol. 37, no. 6, pp. 587-594 (2005).
  17. H. S. Lim and H. C. NO, "GAMMA Multidimensional Multicomponent Mixture Analysis to Predict Air Ingress Phenomena in an HTGR," Nucl. Sci. Eng., vol. 152, pp. 87-97 (2006). https://doi.org/10.13182/NSE06-5
  18. C. L. Wheeler, C. W. Stewart, R. J. Cena, D. S. Rowe, and A. M. Sutey, "COBRA-IV-I: An Interim Version of COBRA for Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores," BNWL-1962, Battelle Pacific Northwest Lab. (1976).
  19. B. W. Travis and M. S. El-Genk, "Thermal-Hydraulics Analyses for 1/6 Prismatic VHTR Core and Fuel Element with and without Bypass Flow," Energy Conversion and Management, vol. 67, pp. 325-341 (2013). https://doi.org/10.1016/j.enconman.2012.11.003
  20. N. I. Tak , M. H. Kim, H. S. Lim, "Development of a Unit- Cell Based Multi-dimensional Heat Conduction Model for a Prismatic Fuel Block," Transactions of the Korean Nuclear Society Spring Meeting, Pyeongchang, Korea, May 27-28, 2010.
  21. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, Second Edition, Pearson Education Limited (2007).
  22. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980).
  23. G. P. Greyvenstein and D. P. Laurie, "A Segregated CFD Approach to Pipe Network Analysis," Int. J. Numer. Meth. Engng, vol. 37, pp. 3685-3705 (1994). https://doi.org/10.1002/nme.1620372107
  24. G. P. Greyvenstein, "An Implicit Method for the Analysis of Transient Flows in Pipe Networks," Int. J. Numer. Meth. Engng, vol. 53, pp. 1127-1143 (2002). https://doi.org/10.1002/nme.323
  25. D. M. McEligot, G. E. McCreery, R. R. Schultz, J. Lee, P. Hejzlar, P. Stahle, P. Saha, "Investigation of Fundamental Thermal-Hydraulic Phenomena in Advanced Gas-Cooled Reactors," INL/EXT-06-11801, Idaho National Laboratory (2006).
  26. H. Kaburaki and T. Takizuka, "Effect of Crossflow on Flow Distribution in HTGR Core Column," J. Nucl. Sci. Tech., vol. 24 (7), pp. 516-525 (1987). https://doi.org/10.1080/18811248.1987.9735842
  27. N. I. Tak, M. H. Kim, and W. J. Lee, "A Benchmark CFD Calculation for a Cross Flow between Fuel Blocks of a Prismatic VHTR," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 22, 2009.
  28. M. H. Kim, "CFD Model for Hot Spot Analysis of Standard Fuel Block," NHDD-RD-CA-11-005, Korea Atomic Energy Research Institute (2011).
  29. S. N. Lee, N. I. Tak, M. H. Kim, and J. M. Noh, "Thermo- Fluid Verification of Fuel Column with Crossflow Gap," Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, Oct. 24-25, 2013.
  30. N. I. Tak, M. H. Kim, and H. S. Lim, "Parallel Computation for Whole Core Thermo-fluid Simulation of Prismatic Gas-Cooled Reactor," Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, Oct. 27-28, 2011.
  31. C. K. Jo, Preliminary Result File of MASTER-GCR Calculation for PMR600, 12BH_B4C_080_R48_MAS_AS_PF3_Case27_summary.dat (2013).
  32. Intel Corporation, "$Intel^{(R)}$ MPI Library for Windows OS, Reference Manual," Rev. 4.0 Update 1, http://www.intel.com (2010).
  33. J. Y. Cho et al., "DeCART v1.2 User's Manual," KAERI/TR-3438/2007, Korea Atomic Energy Research Institute (2007).