Browse > Article
http://dx.doi.org/10.5483/BMBRep.2018.51.3.027

Upstream paths for Hippo signaling in Drosophila organ development  

Choi, Kwang-Wook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Publication Information
BMB Reports / v.51, no.3, 2018 , pp. 134-142 More about this Journal
Abstract
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.
Keywords
Cytoskeleton; Drosophila; Growth control; Hippo signaling; Organ development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Genevet A, Wehr MC, Brain R, Thompson BJ and Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18, 300-308   DOI
2 Xu T, Wang W, Zhang S, Stewart RA and Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063
3 Badouel C, Gardano L, Amin N et al (2009) The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16, 411-420   DOI
4 MacDougall N, Lad Y, Wilkie GS, Francis-Lang H, Sullivan W and Davis I (2001) Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development 128, 665-673
5 Su T, Ludwig MZ, Xu J and Fehon RG (2017) Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded. Dev Cell 40, 478-490 e3   DOI
6 Martin PM, Carnaud M, Garcia del Cano G et al (2008) Schwannomin-interacting protein-1 isoform IQCJ-SCHIP-1 is a late component of nodes of Ranvier and axon initial segments. J Neurosci 28, 6111-6117   DOI
7 Boggiano JC, Vanderzalm PJ and Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21, 888-895   DOI
8 Poon CL, Lin JI, Zhang X and Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 21, 896-906   DOI
9 Chung HL, Augustine GJ2 and Choi KW (2016) Drosophila Schip1 Links Expanded and Tao-1 to Regulate Hippo Signaling. Dev Cell 36, 511-524   DOI
10 Liu T, Rohn JL, Picone R, Kunda P and Baum B (2010) Tao-1 is a negative regulator of microtubule plus-end growth. J Cell Sci 123(Pt 16), 2708-2716   DOI
11 Janody F and Treisman JE (2006) Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium. Development 133, 3349-3357   DOI
12 Justice RW, Zilian O, Woods DF, Noll M and Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534-546   DOI
13 Tapon N, Harvey KF, Bell DW et al (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 67-78
14 Harvey KF, Pfleger CM and Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467   DOI
15 Pantalacci S, Tapon N and Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5, 921-927   DOI
16 Udan RS, Kango-Singh M, Nolo R, Tao C and Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5, 914-920   DOI
17 Wu S, Huang J, Dong J and Pan D (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456   DOI
18 Watt KI, Harvey KF and Gregorevic P (2017) Gregorevic, Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Front Physiol 8, 942   DOI
19 Richardson HE and Portela M (2017) Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 48, 1-9   DOI
20 Fulford A, Tapon N and Ribeiro PS (2017) Upstairs, downstairs: spatial regulation of Hippo signalling. Curr Opin Cell Biol 51, 22-32
21 Butcher DT, Alliston T and Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9, 108-122   DOI
22 Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183   DOI
23 Baumann K (2014) Development. Mechanical forces linked to organ growth. Nat Rev Mol Cell Biol 15, 501
24 Yu FX, Zhao B and Guan KL (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163, 811-828   DOI
25 Das Thakur M, Feng Y, Jagannathan R, Seppa MJ, Skeath JB and Longmore GD (2010) Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol 20, 657-662
26 Jagannathan R, Schimizzi GV, Zhang K et al (2016) AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol. Mol Cell Biol 36, 2526-2542   DOI
27 Rauskolb C, Sun S, Sun G, Pan Y and Irvine KD (2014) Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158, 143-156   DOI
28 Reddy BV and Irvine KD (2013) Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24, 459-471   DOI
29 Sun G and Irvine KD (2013) Irvine, Ajuba family proteins link JNK to Hippo signaling. Sci Signal 6, ra81
30 Yonemura S, Wada Y, Watanabe T, Nagafuchi A and Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12, 533-542   DOI
31 Trichet L, Sykes C and Plastino J (2008) Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J Cell Biol 181, 19-25   DOI
32 Meng Z, Moroishi T and Guan KL (2016) Guan, Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17   DOI
33 Watson KL (1995) Drosophila warts--tumor suppressor and member of the myotonic dystrophy protein kinase family. Bioessays 17, 673-676   DOI
34 Zheng Y, Wang W, Liu B, Deng H, Uster E and Pan D (2015) Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade. Dev Cell 34, 642-655   DOI
35 Huang J, Wu S, Barrera J, Matthews K and Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434   DOI
36 Thompson BJ and Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767-774   DOI
37 Nolo R, Morrison CM, Tao C, Zhang X and Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16, 1895-1904   DOI
38 Gaspar P, Holder MV, Aerne BL, Janody F and Tapon N (2015) Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 25, 679-689   DOI
39 Rauskolb C, Pan G, Reddy BV, Oh H and Irvine KD (2011) Zyxin links fat signaling to the hippo pathway. PLoS Biol 9, e1000624   DOI
40 Harvey KF (2015) Growth control: re-examining Zyxin's role in the hippo pathway. Curr Biol 25, R230-231   DOI
41 Aragona M, Panciera T, Manfrin A et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059   DOI
42 Halder G, Dupont S and Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13, 591-600   DOI
43 Lee JK, Brandin E, Branton D and Goldstein LS (1997) alpha-Spectrin is required for ovarian follicle monolayer integrity in Drosophila melanogaster. Development 124, 353-362
44 Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N and Thompson BJ (2015) The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 34, 940-954   DOI
45 Wong KK, Li W, An Y et al (2015) beta-Spectrin regulates the hippo signaling pathway and modulates the basal actin network. J Biol Chem 290, 6397-6407   DOI
46 Deng H, Wang W, Yu J, Zheng Y, Qing Y and Pan D (2015) Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. Elife 4, e06567
47 Maki K, Han SW, Hirano Y, Yonemura S, Hakoshima T and Adachi T (2016) Mechano-adaptive sensory mechanism of alpha-catenin under tension. Sci Rep 6, 24878   DOI
48 Simpson P, Lawrence PA and Maschat F (1981) Clonal analysis of two wing-scalloping mutants of Drosophila. Dev Biol 84, 206-211   DOI
49 Campbell S, Inamdar M, Rodrigues V, Raghavan V, Palazzolo M and Chovnick A (1992) The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev 6, 367-379   DOI
50 Halder G, Polaczyk P, Kraus ME et al (1998) The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev 12, 3900-3909   DOI
51 Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J and Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18, 435-441   DOI
52 Zhang L, Ren F, Zhang Q, Chen Y, Wang B and Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14, 377-387   DOI
53 Meserve JH and Duronio RJ (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142, 2740-2751   DOI
54 Pan Y, Heemskerk I, Ibar C, Shraiman BI and Irvine KD (2016) Differential growth triggers mechanical feedback that elevates Hippo signaling. Proc Natl Acad Sci U S A [Epub ahead of print]
55 Yang CH, Axelrod JD and Simon MA (2002) Regulation of Frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108, 675-688   DOI
56 Silva E, Tsatskis Y, Gardano L, Tapon N and McNeill H (2006) The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16, 2081-2089   DOI
57 Willecke M, Hamaratoglu F, Kango-Singh M et al (2006) The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16, 2090-2100   DOI
58 Tyler DM and Baker NE (2007) Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 305, 187-201   DOI
59 Wu S, Liu Y, Zheng Y, Dong J and Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14, 388-398   DOI
60 Bennett FC and Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16, 2101-2110   DOI
61 Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R and Irvine KD (2006) Delineation of a Fat tumor suppressor pathway. Nat Genet 38, 1142-1150   DOI
62 Vrabioiu AM and Struhl G (2015) Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Dev Cell 35, 737-749   DOI
63 Feng Y and Irvine KD (2009) Processing and phosphorylation of the Fat receptor. Proc Natl Acad Sci U S A 106, 11989-11994   DOI
64 Matakatsu H, Blair SS and Fehon RG (2017) The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 216, 265-277   DOI
65 Tepass U, Theres C and Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787-799   DOI
66 Pocha SM and Knust E (2013) Complexities of Crumbs function and regulation in tissue morphogenesis. Curr Biol 23, R289-293   DOI
67 Chen CL, Gajewski KM, Hamaratoglu F et al (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A 107, 15810-15815   DOI
68 Grzeschik NA, Parsons LM, Allott ML, Harvey KF and Richardson HE (2010) Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 20, 573-581   DOI
69 Misra JR and Irvine KD (2016) Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 39, 254-266   DOI
70 Ling C, Zheng Y, Yin F et al (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 107, 10532-10537   DOI
71 Robinson BS, Huang J, Hong Y and Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20, 582-590   DOI
72 Margolis B (2017) The Crumbs3 Polarity Protein. Cold Spring Harb Perspect Biol [Epub ahead of print]
73 Pflanz R, Voigt A, Yakulov T and Jackle H (2015) Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently. Open Biol 5, 140161   DOI
74 Poon CL, Mitchell KA, Kondo S, Cheng LY and Harvey KF (2016) The Hippo Pathway Regulates Neuroblasts and Brain Size in Drosophila melanogaster. Curr Biol 26, 1034-1042   DOI
75 Chung HL and Choi KW (2016) Schip1, a new upstream regulator of Hippo signaling. Cell Cycle 15, 2097-2098   DOI
76 Dewey EB, Taylor DT and Johnston CA (2016) Rolling in the mud: Hippo controls oriented cell division. Cell Cycle 15, 607-608   DOI
77 Keder A, Rives-Quinto N, Aerne BL, Franco M, Tapon N and Carmena A (2015) The hippo pathway core cassette regulates asymmetric cell division. Curr Biol 25, 2739-2750   DOI
78 Strzyz P (2015) Cell division: Hippo regulates cell division. Nat Rev Mol Cell Biol 16, 702-703
79 Sansores-Garcia L, Bossuyt W, Wada K et al (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30, 2325-2335   DOI
80 Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR and Janody F (2011) Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138, 2337-2346   DOI
81 Bosveld F, Guirao B, Wang Z et al (2016) Modulation of junction tension by tumor suppressors and protooncogenes regulates cell-cell contacts. Development 143, 623-634   DOI
82 Ko C, Kim YG, Le TP and Choi KW (2016) Twinstar/cofilin is required for regulation of epithelial integrity and tissue growth in Drosophila. Oncogene 35, 5144-5154   DOI
83 Ribeiro P, Holder M, Frith D, Snijders AP and Tapon N (2014) Crumbs promotes expanded recognition and degradation by the SCF(Slimb/beta-TrCP) ubiquitin ligase. Proc Natl Acad Sci U S A 111, E1980-1989   DOI
84 Rieder LE and Larschan EN (2014) Wisdom from the fly. Trends Genet 30, 479-481   DOI
85 Petrilli AM and Fernandez-Valle C (2016) Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35, 537-548   DOI
86 LaJeunesse DR, McCartney BM and Fehon RG (1998) Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J Cell Biol 141, 1589-1599   DOI
87 McCartney BM and Fehon RG (1996) Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the neurofibromatosis 2 tumor suppressor, merlin. J Cell Biol 133, 843-852   DOI
88 McCartney BM, Kulikauskas RM, LaJeunesse DR and Fehon RG (2000) The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127, 1315-1324
89 Pellock BJ, Buff E, White K and Hariharan IK (2007) The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev Biol 304, 102-115   DOI
90 Kremerskothen J, Plaas C, Buther K et al (2003) Characterization of KIBRA, a novel WW domain-containing protein. Biochem Biophys Res Commun 300, 862-867   DOI
91 Baumgartner R, Poernbacher I, Buser N, Hafen E and Stocker H (2010) The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 18, 309-316   DOI
92 Yu J, Zheng Y, Dong J, Klusza S, Deng WM and Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18, 288-299   DOI