• 제목/요약/키워드: Core Temperature

검색결과 1,692건 처리시간 0.032초

총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준 (Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance)

  • 성제중;윤덕주;하상준
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화 (The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material)

  • 박준서;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

멀티코어시스템에서의 예측 기반 동적 온도 관리 기법 (A Prediction-Based Dynamic Thermal Management Technique for Multi-Core Systems)

  • 김원진;정기석
    • 대한임베디드공학회논문지
    • /
    • 제4권2호
    • /
    • pp.55-62
    • /
    • 2009
  • The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.

  • PDF

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1412-1420
    • /
    • 2018
  • An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

캐쉬 구성에 따른 3차원 쿼드코어 프로세서의 성능 및 온도 분석 (Analysis on the Performance and Temperature of the 3D Quad-core Processor according to Cache Organization)

  • 손동오;안진우;최홍준;김종면;김철홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.1-11
    • /
    • 2012
  • 공정기술이 지속적으로 발달함에 따라 멀티코어 프로세서는 성능 향상이라는 장점과 함께 내부 연결망의 긴 지연 시간, 높은 전력 소모, 그리고 발열 현상 등의 문제점들을 내포하고 있다. 이와 같은 2차원 멀티코어 프로세서의 문제점들을 해결하기 위한 방안 중 하나로 3차원 멀티코어 프로세서 구조가 주목을 받고 있다. 3차원 멀티코어 프로세서는 TSV를 이용하여 수직으로 쌓은 여러 개의 레이어들을 연결함으로써 2차원 멀티코어 프로세서와 비교하여 배선 길이를 크게 줄일 수 있다. 하지만, 3차원 멀티코어 프로세서에서는 여러 개의 코어들이 수직으로 적층되므로 전력밀도가 증가하고, 이로 인해 발열문제가 발생하여 높은 냉각 비용과 함께 신뢰성에 부정적인 영향을 유발한다. 따라서 3차원 멀티코어 프로세서를 설계할 때에는 성능과 함께 온도를 반드시 고려하여야 한다. 본 논문에서는 캐쉬 구성에 따른 3차원 쿼드코어 프로세서의 온도를 상세히 분석하고, 이를 기반으로 발열문제를 해결하기 위해저온도 캐쉬 구성 방식을 제안하고자 한다. 실험결과, 명령어 캐쉬는 최고온도가 임계값보다 낮고 데이터 캐쉬는 많은 웨이를 가지는 구성을 적용할 때 최고온도가 임계값보다 높아짐을 알 수 있다. 또한, 본 논문에서 제안하는 캐쉬구성은 쿼드코어 프로세서를 사용하는 3차원 구조에서 캐쉬의 온도 감소에 효과적일 뿐만 아니라 성능 저하 또한 거의 없음을 알 수 있다.

전정맥 전신마취하(下) 복강경 수술환자의 부위별 심부체온의 변화 평가 (Core Temperature Evaluation in Different Body Parts in Patients Undergoing Laparoscope Surgery under Total Intravenous Anesthesia)

  • 함태수;김원호;김남초;유제복
    • 기본간호학회지
    • /
    • 제22권4호
    • /
    • pp.379-386
    • /
    • 2015
  • Purpose: The trend of body temperature change during laparoscopic surgery and the most adequate site for monitoring temperature measurements have not been investigated thoroughly. In this study body temperature change during laparoscopic surgery was measured and measurements of the tympanic, esophageal, and nasopharyngeal core temperatures in surgical patients with total intravenous anesthesia were compared. Methods: From February to October 2013, 28 laparoscopic surgical patients were recruited from a tertiary hospital in Seoul. The patients' core temperature was measured 12 times at ten minute intervals from ten minutes after the beginning of endotracheal intubation. Results: Repeated measure of core temperatures indicated a significant difference according to body part (p=.033), time of measure (p<.001) and the reciprocal interaction between body part and time of measure (p<.027). The core temperatures were highest at tympany location, lowest at nasopharynx. The amount of temperature change was least for the esophagus ($36.10{\sim}36.33^{\circ}C$), followed by nasopharynx and tympany. Conclusion: The esophageal core temperature showed the highest stability followed by nasopharyngeal and tympanic temperature. Therefore, close observations are required between 10~20minutes after the beginning of the operation.

Performance and Heat Tolerance of Broilers as Affected by Genotype and High Ambient Temperature

  • Al-Batshan, H.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1502-1506
    • /
    • 2002
  • This experiment was conducted to evaluate the effects of the broiler's genotype ($G_t$) and ambient temperature ($T_a$) on performance and core body temperature ($T_core$) of broiler chicks. A factorial arrangement of two $G_t$ (Hubbard and ISA J57 chicks) and two $T_a$ (moderate, $23{\pm}0.5^{\circ}C$ and hot, $33{\pm}0.5^{\circ}C$) were used in this study. Performance data (body weight gain, feed intake and feed:gain ratio) were determined weekly for six weeks. Chicks' $T_core$ was measured using a biotelemetric system between Weeks five and six. Results showed that body weight gain and feed intake were significantly high, and feed:gain ratio was significantly low for Hubbard chicks compared to those of ISA J57 chicks. High $T_a$ significantly reduced weight gain and feed intake. Furthermore, the reduction in body weight gain and feed intake under the hot $T_a$ was more pronounced for Hubbard chicks than those of the ISA J57 chicks resulting in significant $G_t$ by $T_a$ interaction. Chicks grown under moderate $T_a$ had significantly lower $T_core$ than those grown under hot $T_a$. The $T_core$ of the Hubbard chicks was significantly lower than that of the ISA J57 at the moderate $T_a$ while under the hot $T_a$, the magnitude of the change in $T_core$ was more pronounced in Hubbard chicks than that of ISA J57; this resulted in a significant $G_t$ by $T_a$ interaction. The results of this study indicate that chicks with higher potential for growth under thermo-neutral temperature are more susceptible to heat stress than chicks with lower potential for growth. This maybe due, at least in part, to their lower body $T_core$ under moderate temperature and to the lesser ability of these fast growing chicks to regulate their $T_core$ when exposed to heat stress, as was clearly shown on these birds' performance.

PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 - (Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier -)

  • 설수덕
    • 접착 및 계면
    • /
    • 제11권3호
    • /
    • pp.112-119
    • /
    • 2010
  • PMMA와 PBA core 제조 시 개시제는 APS를, 유화제 SDBS의 농도를 0.01에서 0.03 wt% 일 때 전환율이 95.8과 92.3%로 가장 우수하였으며, core-shell 복합입자의 제조 시에는 SDBS의 농도 0.02 wt% 일 때 PMMA/PBA core-shell 복합입자는 전환율이 90.0%, PBA/PMMA core-shell 복합입자는 89.0%가 되었다. FT-IR 분석과 GPC에 의한 평균분자량 측정을 통해 core와 shell 단량체들이 중합되어 있음을 확인하고, 복합입자의 형태는 상온에서의 필름형성정도와 TEM 분석으로 확인하였다. DSC에 의해 유리전이온도를 측정함으로써 일반 공중합체와는 달리 2개의 유리전이온도가 존재하여 core-shell 복합입자가 형성되었음을 알 수 있고, 각각의 core-shell 복합입자의 인장강도와 신율의 측정을 통해 고기능성 접착바인더로서의 사용가능성을 확인하였다.

Burnable poison optimized on a long-life, annular HTGR core

  • Sambuu, Odmaa;Terbish, Jamiyansuren
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3106-3116
    • /
    • 2022
  • The present work presents analysis results of the core design optimizations for an annular, prismatic High Temperature Gas-cooled Reactor (HTGR) with passive decay-heat removal features. Its thermal power is 100 MWt and the operating temperature is 850 ℃ (1123 K). The neutronic calculations are done for the core with heterogeneous distribution of fuel and burnable poison particles (BPPs) to flatten the reactivity swing and power peaking factor (PPF) during the reactor operation as well as for control rod (CR) insertion into the core to restrain a small excess reactivity less than 1$. The next step of the study is done for evaluation of core reactivity coefficient of temperature.