Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.022

Burnable poison optimized on a long-life, annular HTGR core  

Sambuu, Odmaa (Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia)
Terbish, Jamiyansuren (Nuclear Research Center, National University of Mongolia)
Publication Information
Nuclear Engineering and Technology / v.54, no.8, 2022 , pp. 3106-3116 More about this Journal
Abstract
The present work presents analysis results of the core design optimizations for an annular, prismatic High Temperature Gas-cooled Reactor (HTGR) with passive decay-heat removal features. Its thermal power is 100 MWt and the operating temperature is 850 ℃ (1123 K). The neutronic calculations are done for the core with heterogeneous distribution of fuel and burnable poison particles (BPPs) to flatten the reactivity swing and power peaking factor (PPF) during the reactor operation as well as for control rod (CR) insertion into the core to restrain a small excess reactivity less than 1$. The next step of the study is done for evaluation of core reactivity coefficient of temperature.
Keywords
Long-life; Annular HTGR; Passive decay heat removal; Burnable poison particles; Control rod insertion depth; Temperature coefficient of reactivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.R. Lamarsh, Introduction to Nuclear Reactor Theory, Textbook, American Nuclear Society, 2002.
2 K. Kunitomi, S. Nakagawa, M. Shinozaki, Passive heat removal by vessel cooling system of HTTR during no forced cooling accidents, Nucl. Eng. Des. 166 (1996) 179-190.   DOI
3 David, A.; David, A. P.: Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach. INL/EXT-13-30872.
4 Sh Saito, T. Tanaka, Y. Sudo, et al., Design and safety consideration in the high-temperature engeneering test reactor (HTTR), Energy 16 (1991) 2, https://doi.org/10.1016/0360-5442(91)90124-5, issues.   DOI
5 Sh Saito, T. Tanaka, Y. Sudo, et al., Design of high temperature engineering test reactor (HTTR), Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan), in: JAERI-1332, 1994.
6 COMSOL-5.2, Multiphysics modeling, finite element analysis and engineering simulation software, Available from: http://www.comsol.com//.
7 S. Odmaa, T. Obara, Neutronic and thermo-hydraulic analyses of a small, long-life HTGR for passive decay heat removal, J. Nucl. Sci. Technol. 12 (2015) 1519-1529, https://doi.org/10.1080/18811248.2002.9715303.   DOI
8 S. Odmaa, T. Jamyansuren, O. Toru, et al., Design parameters in an annular, prismatic HTGR for passive decay heat removal, Ann. Nucl. Energy 111 (2018) 441-448, https://doi.org/10.1016/j.anucene.2017.09.034.   DOI
9 T. Maruyama, et al., Change in physical properties of high density Isotropic graphites irradiated in the 'JOYO' fast reactor, J. Nucl. Mater 225 (1995) 267, https://doi.org/10.1016/0022-3115(95)00051-8.   DOI
10 K. Shibata, T. Kawano, T. Nakagawa, et al., Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3, J. Nucl. Sci. Technol. 39 (11) (2002) 1125-1136, https://doi.org/10.1080/18811248.2002.9715303.   DOI
11 K. Shibata, O. Iwamoto, T. Nakagawa, et al., JENDL-4.0 : a new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48 (1) (2011) 1-30, https://doi.org/10.1080/18811248.2011.9711675.   DOI
12 The Status of Graphite Development for Gas Cooled Reactors, IAEA-TECDOC-690, IAEA, VIENNA, 1993.
13 C.H. Wu, J.P. Bonal, B. Kryger, The effect of high-dose neutron irradiation on the properties of graphite and silicon carbide, J. Nucl. Mater. 208 (1994) 1-7, https://doi.org/10.1016/0022-3115(94)90191-0.   DOI
14 S. Odmaa, T. Obara, Possible design in long-life small prismatic HTGR for passive decay heat removal, Nucl.Sci and Eng. (IF: 0.657) 177 (2014) 97-109, https://doi.org/10.13182/NSE13-22.   DOI
15 Y. Nagaya, K. Okumura, T. Mori, et al., MVP/GMVP II: General Purpose Monte Carlo Code for Neutron and Photon Transport Calculations Based on Continuous Energy and Multigroup Methods. JAERI-1348, Japan Atomic Energy Research Institute, 2005, https://doi.org/10.11484/jaeri-1348.   DOI
16 S. Shiozawa, S. Fujikawa, T. Ioyku, et al., Overview of HTTR design features, Nucl. Eng. Des. 233 (1-3) (2004) 11-21, https://doi.org/10.1016/j.nucengdes.2004.07.16.   DOI
17 S. Odmaa, T. Jamiyansuren, et al., Comparative study on core designs of an annular, prismatic HTGR for passive decay heat removal, Nucl. Saf. Simul. 9 (2018) 194-199.
18 K. Okumura, Y. Nagaya, T. Mori, et al., MVP-BURN User's Manual, Tokai. Atomic Energy Agency, 2005.