• 제목/요약/키워드: Copula Model

검색결과 78건 처리시간 0.024초

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

Stochastic simulation based on copula model for intermittent monthly streamflows in arid regions

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.488-488
    • /
    • 2015
  • Intermittent streamflow is common phenomenon in arid and semi-arid regions. To manage water resources of intermittent streamflows, stochactic simulation data is essential; however the seasonally stochastic modeling for intermittent streamflow is a difficult task. In this study, using the periodic Markov chain model, we simulate intermittent monthly streamflow for occurrence and the periodic gamma autoregressive and copula models for amount. The copula models were tested in a previous study for the simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data; however, the copula models have never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system in the present study. A few drawbacks of the PGAR model were identified, such as significant underestimation of minimum values on an aggregated yearly time scale and restrictions of the parameter boundaries. Conversely, the copula models do not present such drawbacks but show feasible reproduction of key and operational statistics. We concluded that the periodic Markov chain based the copula models is a practicable method to simulate intermittent monthly streamflow time series.

  • PDF

Copula 모형을 이용한 에너지 가격과 경제적 불확실성 사이의 의존관계 분석 (Analysis on the Dependence Structure between Energy Price and Economic Uncertainty Using Copula Model)

  • 김부권;최기홍;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제29권2호
    • /
    • pp.145-170
    • /
    • 2020
  • 본 연구는 에너지(석유, 천연가스, 석탄) 가격과 경제적(실물 및 금융) 불확실성 사이의 의존성 구조를 분석하였다. Copula 모형을 이용해 얻은 의존구조 분석 결과를 요약하면 다음과 같다. 첫째, 에너지 가격과 실물·금융 불확실성 조합의 적합한 모형을 살펴보면, 원유가격과 실물·금융 불확실성 조합은 BB7 copula 모형, 천연가스 가격과 실물·금융 불확실성 조합은 Joe copula 모형, 석탄 가격과 실물·금융 불확실성 조합은 Clayton copula 모형이 각각 가장 적합한 모형으로 선정되었다. 둘째, 전체적인 의존성 구조를 살펴보면, 원유가격, 천연가스 가격, 석탄 가격과 실물 불확실성은 양(+)의 의존성을 보였다. 그렇지만 금융 불확실성과 원유가격은 양(+)의 의존성을 갖지만, 천연가스 가격과 석탄 가격은 금융 불확성과 음(-)의 의존성을 가지는 것으로 나타났다. 전체적으로 보면, 에너지원 중 원유가격이 실물·금융 불확실성과 가장 높은 의존성을 가지는 것으로 나타났다. 셋째, 극단적인 사건을 나타내는 꼬리 의존성을 분석한 결과, 실물 불확실성과 원유, 천연가스 가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났으며, 금융 불확실성과 원유가격은 위 꼬리 의존성만 보이는 비대칭 관계를 가지는 것으로 나타났다. 즉, 비대칭 관계를 갖는 에너지 가격은 부정적인 극단사건이 발생하는 경우 불확실성 변수와 강한 의존관계가 있는 것으로 나타났다. 반면, 경제적 불확실성과 석탄 가격은 꼬리 의존성이 없는 것으로 나타났다.

이변량 가뭄빈도해석을 위한 Bayesian Copula 모델 개발 (A development of Bayesian Copula model for a bivariate drought frequency analysis)

  • 김진영;김진국;조영현;권현한
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.745-758
    • /
    • 2017
  • Copula 함수 기반의 모형들은 가뭄빈도해석 및 수문시계열분석 등 수문학적 모델링을 위해 다각적으로 활용되고 있다. 그러나 기존 연구에서는 Copula 함수 및 주변확률분포 매개변수에 대한 불확실성을 정량적으로 평가할 수 있는 모형의 개발 사례는 국내외적으로 미진한 실정이다. 이러한 점에서 본 연구에서는 기존 Copula 모형에 Bayesian 기법을 도입하여 매개변수의 불확실성을 평가할 수 있는 이변량 가뭄빈도해석 기법을 개발하였다. 본 연구에서는 우선적으로 모의자료를 대상으로 모형의 적합성을 평가하였으며, 모형 적용결과 가정한 매개변수를 정확하게 재추정하는 것을 확인할 수 있다. 최종적으로 기 개발된 Bayesian Copula 함수 기반의 이변량 가뭄빈도해석 모형을 한강유역에 적용하여 최근 2013~2015년에 가뭄 사상을 평가하였다. 서울, 경기 및 강원 지역에서 특히 가뭄이 심한 것으로 나타났으며, 대부분의 지역에서 결합재현기간이 100년을 상회하는 것으로 평가되었다. 본 연구를 통해 제안된 모형의 검증과정과 도출된 결과를 기준으로 판단해보면 가뭄자료의 분포특성 및 자료간의 상관성을 효과적으로 재현하는데 유리할 뿐만 아니라 매개변수의 불확실성을 평가할 수 있는 장점을 확인할 수 있었다.

잔차를 이용한 코플라 모수 추정 (Residual-based copula parameter estimation)

  • 나옥경;권성훈
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.267-277
    • /
    • 2016
  • 본 연구에서는 잔차를 이용하여 오차항의 코플라 함수를 추정하는 문제를 고려하였다. 확률적 회귀모형을 개별모형으로 갖는 경우, 오차항 대신 잔차들의 경험적 분포함수를 이용하여 구한 코플라 모수에 대한 준모수적 추정량의 성질을 살펴보았으며, 이 추정량이 일치추정량이 되기 위한 조건을 구하였다. 응용사례로 코플라-자기회귀이동평균 모형을 다루었으며, 모의실험을 통해 자기회귀 근사를 통해 얻은 잔차를 이용하여 계산한 추정량의 성질도 살펴보았다.

Copula-based common cause failure models with Bayesian inferences

  • Jin, Kyungho;Son, Kibeom;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.357-367
    • /
    • 2021
  • In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.

성근 바인 코풀라 모형을 이용한 고차원 금융 자료의 VaR 추정 (Value at Risk calculation using sparse vine copula models)

  • 안광준;백창룡
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.875-887
    • /
    • 2021
  • 최대예상손실액(VaR)은 위험관리수단으로 금융에서 시장위험을 측정하는 대표적인 값이다. 본 논문에서는 다양한 자산으로 이루어진 고차원 금융자료에서 자산들 간의 의존성 구조를 잘 설명할 수 있는 성근 바인 코풀라를 이용한 VaR 추정에 대해서 논의한다. 성근 바인 코풀라는 정규 바인 코풀라 모형에 벌점화를 적용한 방법으로 추정하는 모수의 개수를 벌점화를 통해 축소하는 방법이다. 모의 실험 결과 성근 바인 코풀라를 이용한 VaR 추정이 더 작은 표본 외 예측오차를 줌을 살펴볼수 있었다. 또한 최근 5년간의 코스피 60개 종목을 바탕으로 실시한 실증 자료 분석에서도 성근 바인 코풀라 모형이 더 좋은 예측 성능을 보임을 확인할 수 있었다.

Copula 모형을 이용한 이변량 강우빈도해석 (Bivariate Frequency Analysis of Rainfall using Copula Model)

  • 주경원;신주영;허준행
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.827-837
    • /
    • 2012
  • 확률강우량은 수공구조물의 설계에 있어 중요한 역할을 하며 이러한 확률강우량의 산정은 일반적으로 일변량 빈도해석을 수행하고 최적의 확률분포형을 찾아냄으로써 계산된다. 하지만 일변량 빈도해석은 수행 시 지속기간이 제한적이라는 단점이 있으며 이를 보완하기 위해 본 연구에서는 이변량 빈도해석을 수행하였다. 다변량 모형인 copula 모형 중3가지의 분포형을 이용하여 5개 지점의 연최대강우사상에 대해 이 변량 빈도해석을 수행하였으며 확률변수로 강우량과 지속기간을 사용하였다. 주변분포형은 강우량에는 Gumbel (GUM), generalized logistic (GLO) 분포형, 지속기간에는 generalized extreme value (GEV), GUM, GLO 분포형이사용됐으며 copula 모형은Frank, Joe, Gumbel-Hougaard 모형을 이용하였다. 주변분포형의 매개변수는 확률가중모멘트법을 이용하여 추정하였으며, copula 모형의 매개변수는 준모수방법인 의사최우도법을 사용하여 구하였다. 이를 통해 얻어진 확률강우량을 주변분포형과 copula 모형을바꾸어가며 비교하였다. 그 결과, 주변분포형의 종류에 따른 변화에서는 지속기간의 분포형에는 크게 영향을 받지 않는 것으로 나타났다. 강우량의 분포형에 따라서는 조금씩 차이가 났으며 강우량의 분포형이 GUM일 경우, GLO일 때에 비해 재현기간이 증가할수록 확률강우량이 증가하는 경향이 두드러졌다. Copula 모형별로 비교해보았을 때, Joe, Gumbel-Hougaard 모형은 비슷한 경향을 나타내었으며 Frank 모형은 재현기간의 증가에 따른 확률강우량의 증가가 강하게 나타냈다.

국제운임지수와 원유가격의 의존관계 분석 (Analysis of dependency structure between international freight rate index and crude oil price)

  • 김부권;김동윤;최기홍
    • 한국항만경제학회지
    • /
    • 제35권4호
    • /
    • pp.107-120
    • /
    • 2019
  • 원유는 주요 산업에서 주원료로 활용되고 있는 자원으로 원자재 시장 가격 전반을 대변해주고, 해운시장에서는 선박 연료로 운임 산정에 영향을 미치는 중요한 요소이다. 이에 따라 원유와 국제 운임지수는 밀접한 관련이 존재한다. 따라서 본 연구는 2009년 1월부터 2019년 6월까지 현물유가(WTI)와 국제운임지수(BDI, BCI, BPI, BSI, BHI)의 일별 자료를 이용하여 유가와 국제운임지수의 의존관계를 분석하였다. 주요 분석결과를 요약하면 다음과 같다. 첫째, copula 추정결과를 보면, WTI-BDI에서는 survival Gumbel copula, WTI-BCI는 Clayton copula, WTI-BPI는 Survival Joe copula, WTI-BSI는 Joe copula, WTI-BHI는 survival Gumbel copula가 가장 적합한 copula 모형으로 선정되었다. 둘째, Kendall's tau를 살펴보면 다음과 같다. BDI와 유가 변화율 조합에서 양(+)의 상관관계가 나타났다. 또한 선형별 국제운임지수(BCI, BPI, BSI, BHI)와 유가 변화율의 조합에서는 BHI와 유가변화율 조합을 제외하고 모두 양(+)의 의존성을 가지는 것으로 나타났다. 특히, BCI와 유가변화율 조합에서 가장 강한 의존성이 나타났다. 셋째, 꼬리 의존성을 살펴보면 유가변화율과 BDI, BCI는 왼쪽 꼬리의존성이 나타나지만, 유가변화율과 BSI는 오른쪽 꼬리 의존성이 나타났다.

Copula 함수를 활용한 삼변량 가뭄빈도해석 기법 개발 (A development of trivariate drought frequency analysis approach using copula function)

  • 김진영;소병진;김태웅;권현한
    • 한국수자원학회논문집
    • /
    • 제49권10호
    • /
    • pp.823-833
    • /
    • 2016
  • 본 연구에서는 최근 발생한 2014~2015 가뭄 사상을 보다 정확하게 분석하기 위해 삼변량 Copula 함수를 도입하여 연구를 진행하였다. 기존 연구에서는 일반적으로 가뭄 분석시 이변량(가뭄 지속시간, 심도)를 활용한 연구가 다수 진행되었다. 그러나 최근 강우자료의 패턴을 살펴보면 두 변량 이외의 가뭄 강도가 중요한 인자로 평가되어 이를 함께 고려한 삼변량 Copula 분석을 수행하였으며, 기상청 관측소 중 서울 관측소를 대상으로 연구를 진행하였다. 기본적으로, 이변량 빈도해석 결과에 비해 삼변량 해석 결과는 동일한 가뭄 사상에 대해서 다소 증가된 재현기간을 나타내는 것으로 파악됐다. 이와 더불어, Gumbel Copula 함수의 경우 Student t Copula 함수보다 가뭄 위험도 평가 시 다소 과대 추정하는 것으로 확인되었다. 즉, 삼변량 빈도해석 시 고려되는 Copula 함수의 선택이 가뭄의 재현기간을 추정하는데 있어 매우 민감한 사항으로 평가되었다.