• Title/Summary/Keyword: Copper thin films

Search Result 218, Processing Time 0.153 seconds

STRUCTURAL ANALYSIS OF COPPER PHTHALOCYANINE THIN FILMS FABRICATED BY PLASMA-ACTIVATED EVAPORATION

  • Kim, Jun-Tae;Jang, Seong-Soo;Lee, Soon-Chil;Lee, Won-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • Copper Phthalocyanine (CuPc) thin films were fabricated on the silicon wafers by plasma activated evaporation method and structural analysis were carried out with various spectroscopies. The CuPc films had dense and smooth morphology and they also showed good mechanical properties and chemical resistance. The main molecular structure of the CuPc, which is the conjugated aromatic heterocyclic ring structure, was maintained even in the plasma process. However, metal-ligand (Cu-N) bands were deformed by the plasma process and the structure became amorphous especially at higher process pressures. Oxygen impurities were incorporated in the film and carboxyl functional groups were formed at the peripheral benzene ring. The structure and morphology of the films were dependent on the process pressure but relatively irrespective of the RF power.

  • PDF

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Characteristics of Copper Thin Films and Patter Filling by Electrochemical Deposition(ECD) (전기화학증착법에 의한 구리박막과 패턴충전 특성)

  • Kim, Yong-An;Yang, Seong-Hun;Lee, Seok-Hyeong;Lee, Gyeong-U;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.583-588
    • /
    • 1999
  • The characteristics of copper thin films and pattern filling capability were investigated by ECD. Prior to deposition of copper film, seed-Cu/Ta(TaN)/$SIO_2$(BPSG)/Si structure was manufactured. Copper deposition was performed with various current waveforms(DC/PC, 1~10,000Hz) and current densities(10~60 mA/$\textrm{cm}^2$) after pretreatment (Oxident removal, wetting) of seed-layer. Conformal pattern filling was performed using PC method with fast deposition rate of 6,000~8,000$\AA$/min. Heat-treated($450^{\circ}C$, 30min) copper films showed good resistivities of 1.8~2.1$\mu$$\Omega$.cm. According to the XRD analysis, (111)-preferred orientation of copper film was found in ECD-Cu/seed-Cu/Ta/$Sio_2$/Si structure. Also, we have successfully achieved to fill via holes with 0.35$\mu\textrm{m}$ width and 4:1 aspect ratio.

  • PDF

Effects of Hot Rolling on Microstructures and Magnetic Properties

  • Hong, Byung-Deug;Kim, Jae-Kwan;Cho, Kyung-Mox
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.111-114
    • /
    • 2006
  • We electroplated copper-cobalt thin films on a silicon substrate, which had 150 nm thick copper seed layer. The adhesion between the two metallic layers could be increased by utilizing a proper organic additive, pulse plating technique, and high temperature annealing. The thin films exhibited columnar growth of the deposits and enhanced adhesion. This is attributed to the grain growth mechanism introduced by the additive and annealing.

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Photoelectrochemical property of thermal copper oxide thin films (열성장을 통해 형성된 산화구리의 광전기화학적 특성)

  • Choi, Yongseon;Yoo, JeongEun;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.4
    • /
    • pp.215-221
    • /
    • 2022
  • In the present work, copper oxide thin films were formed by heat-treatment method with different temperatures and atmosphere, e.g., at 200 ~ 400 ℃; in air and Ar atmosphere. The morphological, electrical and optical properties of the thermally fabricated Cu oxide films were analyzed by SEM, XRD, and UV-VIS spectrometer. Thereafter, photoelectrochemical properties of the thermal copper oxide films were analyzed under solar light (AM 1.5, 100 mW/cm2). Conclusively, the highest photocurrent was obtained with Cu2O formed under the optimum annealing condition at 300 ℃ in air atmosphere. In addition, EIS results of Cu oxide formed in air atmosphere showed relatively low resistance and long electron life-time compared with Cu Oxide fabricated in Ar atmosphere at the same temperature. This is because heat-treatment in Ar atmosphere could not form Cu2O due to lack of oxygen, and thermally formed CuO at high temperature suppressed stability and conductivity of the Cu oxide.

Electrical Properties of PbS-CuS Thin Films Prepared by Chemical Bath Deposition (CBD 방법에 의한 PbS-CuS 박막의 전기적 특성)

  • 정수태;조종래;조정호;정재훈;김강언;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.423-429
    • /
    • 2001
  • PbS, CuS and (Pb,Cu)S thin films were chemically deposited on glass from alkaline baths containing lead acetate, copper chloride, thiourea and triethanolamine. The deposition, optical, resistivity and thermal electric properties of these films were studied. PbS thin films showed a hexagonal structure and CuS thin films showed amorphous. The crystalline of (Pb,Cu)S thin films was obtained by heat treatment at 200$\^{C}$ and the deposition ratio of Pb to Cu showed 7:3. The energy gap of PbS, CuS and (Pb,Cu)S thin films were 1.7, 2.1 and 2.4 eV, respectively. Sheet resistance of PbS thin films was less affected on thermal annealing, but hose of (Pb,Cu)S and CuS thin films were more reduced about 3 orders of magnitude. All of those thin films indicated p type semiconductor in temperature ranging 30$\^{C}$ to 150$\^{C}$.

  • PDF

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Formation of CVD-Cu Thin Films on Polyimide Substrate (Polyimide 기판을 이용한 CVD-Cu 박막 형성기술)

  • 조남인;임종설;설용태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Copper thin films have been prepared by a metal organic chemical vapor deposition (MOCVD) technology on polyimide and TiN substrates. The Cu-MOCVD technology has advantages of the high deposition rate and the good step coverage compared with the conventional physical vapor deposition (PVD) technology in several industrial applications. The Cu films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were annealed in a vacuum condition after the deposition, and the annealing effect on the electrical properties of the films was measured. The crystallinity and the microstructures of the films were observed by scanning electron microscopy (SEM), and the electrical resistivity was measured by 4-point probe. In the case of the Cu deposition on TiN substrate, the best electrical property of the films was measured for the samples prepared at 18$0^{\circ}C$. Very high deposition rate of the Cu film up to 250 nm/min was obtained on the polyimide substrate when the mixture of liquid and vapour precursor was used.

  • PDF