• Title/Summary/Keyword: Copper pipe

Search Result 176, Processing Time 0.026 seconds

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C (혼합냉매 R-407C의 증발 열전달과 압력강하)

  • Roh, Geon-Sang;Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

Study on Laminar Mixed Convection of Developing Flow in Vertical Pipe (수직관내 발달 유동의 층류혼합대류 연구)

  • Ko, Bong-Jin;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2010
  • Experiments on laminar mixed convection in a vertical pipe were performed for the Re range 1,000-3,000, the $Gr_H$ range $10^5-10^8$, the Pr range 2,000-7,000, and aspect ratio range 1-7. Using the analogy concept, heat transfer systems were simulated by mass transfer systems. A cupric acid.copper sulfate electroplating system was adopted as the mass transfer system, and the mass transfer rates were measured. The measured Nu values were far greater than those previously reported because of the large value of pr in this experiment. As the aspect ratio in this study was not sufficiently large for the flow to be fully developed, the test results were similar to those for mixed convection on a vertical plate rather than that inside a long vertical pipe. It was concluded that the behavior of laminar mixed convection of a developing flow in a vertical pipe at a low aspect ratio and low $Gr_H$ is similar to that of laminar mixed convection in the vertical plate. As the aspect ratio and $Gr_H$ increase, the laminar mixed convection phenomena becomes similar to that observed in a fully developed flow in the vertical pipe.

Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method (역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가)

  • Kim, E.H.;Kim, H.K.;Seo, K.S.;Lee, M.K.;Cho, C.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.

Introduction to Helium Leak Detection Techniques for Cryogenic Systems

  • Kim, Heetae;Chang, Yong Sik;Kim, Wookang;Jo, Yong Woo;Kim, Hyung Jin
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2015
  • Many welding processes are performed to construct cryogenic system. Leak-tight for the cryogenic system is required at low temperature environment. Helium leak detection techniques are commonly used to find leak for the cryogenic system. The helium leak detection techniques for spraying, sniffing and pressurizing techniques are introduced. High vacuum is also necessary to use helium leak detector. So, types of fluid flow, effective temperature, conductance and pumping speed are introduced for vacuum pumping. Leak test procedure is shown for pipe welding, cryomodule and low temperature test. Cryogenic seals which include copper gasket, helicoflex gasket and indium are investigated.

An Experimental Study on the Heat Transfer Characteristics in Miniature Heat Pipes with Screen Wick (스크린 윅을 삽입한 소형 히트파이프에서 열전달 특성에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Ko, Y.K.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.572-578
    • /
    • 2001
  • This study is to research the heat transfer characteristics in copper-water heat pipes with screen wick, #100. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size is smaller than before. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle ${-6}^{\circ}$, #100 2layer screen mesh is shown the best heat transfer performance.

  • PDF

Proposition of copper-foil magnetic sensor for the two-axis remote measurement of bending vibration of a non-metallic cylinder (비금속 배관에서의 원격 2 축 굽힘 진동 측정을 위한 동박 패치형 자기 센서의 제안)

  • Kim, Jin-Ki;Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.322-325
    • /
    • 2007
  • This paper suggests a non-contact sensor for measuring bending vibration of a non-metallic cylinder in two orthogonal directions simultaneously. Recent research shows that a solenoid can pick up bending vibrations of a nonmetallic cylinder based on the reversed Lorentz force mechanism if an electrical conductive patch is attached to the cylinder. In this work, pairs of specially designed patches are used to make two independent paths for the current induced by bending vibrations, which enables the measurement of bending vibrations along two orthogonal directions simultaneously. The working performance of the developed sensor was verified by using two accelerometers.

  • PDF

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A Study on the Effects of the Cold Heat Storage with Salt Water on the Performance of a Kimchi Refrigerator (염수 축냉이 김치냉장고의 성능에 미치는 영향)

  • Gil, Bog-Im;Choi, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.891-896
    • /
    • 2010
  • The objective of the present study is to reveal the effects of a phase-change material on the performance of a Kimchi refrigerator. Two-percent salt water, of which melting temperature was $-1.1^{\circ}C$, was used for the phase-change material. The salt water was packed in silicon cases and inserted between Kimchi container and the copper pipe of the evaporator. The maximum and minimum temperatures of the inner wall of the Kimchi container without salt-water pack were $-0.2^{\circ}C$ and $-8.9^{\circ}C$, which were remarkably improved by using the salt-water packs, resulting $-0.5^{\circ}C$ and$ -1.9^{\circ}C$. This shows a useful application of using phase-change materials for accurate temperature controls.

Proposition of Copper - Foil Magnetic Sensor for the Two-axis Remote Measurement of Bending Vibration of a Non-metallic Cylinder (비금속 배관에서의 원격 2축 굽힘 진동 측정을 위한 동박 패치형 자기 센서의 제안)

  • Kim, Jin-Ki;Han, Soon-Woo;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.381-385
    • /
    • 2008
  • This paper suggests a non-contact sensor for measuring bending vibration of a non-metallic cylinder in two orthogonal directions simultaneously. Recent research shows that a solenoid can pick up bending vibrations of a nonmetallic cylinder based on the reversed Lorentz force mechanism if an electrically conductive patch is attached to the cylinder. In this work, pairs of specially designed patches are used to make two independent paths for the current induced by bending vibrations, which enables the measurement of bending vibrations along two orthogonal directions simultaneously. The working performance of the developed sensor was verified by using two accelerometers.