• Title/Summary/Keyword: Copper Foil

검색결과 121건 처리시간 0.032초

폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구 (Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT)

  • 구현철;김운학;오홍섭
    • 한국건설순환자원학회논문집
    • /
    • 제10권1호
    • /
    • pp.66-73
    • /
    • 2022
  • 동절기 콘크리트 포장체의 블랙아이스 발생위험을 낮추고 동결에 의한손상을 방지할 목적으로 콘크리트의 전도저항성을 활용하여 자기 히팅 콘크리트를 개발하고자 하였다. 이를 위하여 분말형과 액상형 폐CNT와 전도촉진을 위해 폐음극재를 사용하여 강도변화와 온도 발열특성을 평가하고자 하였다. 액상형 폐CNT가 모르타르내에서 분산정도가 효과적이고, 강도저하가 작게 발생하는 것으로 분석되었다. 또한 모르타르에 스틸매쉬, 구리포일과 구리선을 전극으로 적용하여 DC 24 V를 공급하였으며, 폐CNT, 폐음극재과 탄소섬유 혼입율에 따른 온도변화 특성을 평가하였다. 또한 선정된 최적배합으로부터 전극간격에 따른 온도 특성을 평가하여 AC 50 V 까지는 전극간격 100 mm 까지는 충분한 발열 특성을 갖는 것을 확인하였다.

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.246-249
    • /
    • 2013
  • Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

電磁誘導形 水中音原의 제작과 특성 해석 (An Electromagnetic Induction Underwater Acoustic Transducer Design And Its Characteristics)

  • 박윤규;하강열;장지원
    • 한국음향학회지
    • /
    • 제11권3호
    • /
    • pp.67-73
    • /
    • 1992
  • 電磁誘導形 音源裝置는 짧은 펄스의 음파를 수중에 放射시킬 수 있어, 높은 距離分解能이 요구되는 해저 탐사용 음원 또는 수중 음파전달 특성시험용 음원등으로 널리 이용될 수 있다. 본 연구에서는 Eisenmenger가 제안한 형태의 電磁誘導形 音源裝置를 설계 제작하여, 放射되는 음파의 파형을 관찰하고, 그 주파수 특성을 분석하였다. 제작된 음원으로부터는 약 한 주기의 짧은 충격 펄스의 초음파가 얻어졌으며, 그 음압은 진동판의 두께가 얇은 경우에 크며, 콘덴서의 용량에 비례하여 증가하였다. 발생된 초음파의 중심 주파수는 振動板의 두께가 두꺼운 경우에 높으며, 콘덴서 용량이 증가할수록 낮아지고, 대역폭도 좁아졌다.

  • PDF

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

RF Conductivity Measurement of Conductive Zell Fabric

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제16권1호
    • /
    • pp.24-28
    • /
    • 2016
  • This study presents a conductivity measurement technique that is applicable at radio frequencies (RF). Of particular interest is the measurement of the RF conductivity of a flexible Zell fabric, which is often used to implement wearable antennas on clothes. First, the transmission coefficient is measured using a planar microstrip ring resonator, where the ring is made of a Zell fabric. Then, the fabric's conductivity is determined by comparing the measured transmission coefficient to a set of simulation data. Specifically, a MATLAB-based root-searching algorithm is used to find the minimum of an error function composed of measured and simulation data. Several error functions have been tested, and the results showed that an error function employing only the magnitude of the transmission coefficient was the best for determining the conductivity. The effectiveness of this technique is verified by the measurement of a known copper foil before characterizing the Zell fabric. The conductivity of the Zell fabric at 2 GHz appears to be within the order of $10^4S/m$, which is lower than the DC conductivity of $5{\times}10^5S/m$.

Influence of Dangling Bonds on Nanotribological Properties of Alpha-beam Irradiated Graphene

  • Hwang, Jinheui;Kim, Jong Hoon;Kwon, Sangku;Hwang, C.C.;Wu, Junqiao;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.265-265
    • /
    • 2013
  • We have investigated the influences of dangling bonds generated by alpha particle irradiation on friction and adhesion properties of graphene. Single layer of graphene grown with chemical vapor deposition on copper foil was irradiated by the alpha beam with the average energy of 3.04 MeV and the irradiation dosing between $1{\times}10^{14}$ and $1{\times}10^{15}$/$cm^3$. Raman spectroscopic showed that the ${\pi}$ electron states below Fermi level arises and the $I_D$/$I_G$ increases as increasing the dosing of alpha particle irradiation. The core level X-ray photoelectron (XPS) revealed that these defects represent the creation of various carbon-related defects and dangling bond. The nanoscale tribological properties were investigated with atomic force microscopy in ultrahigh vacuum. The friction appeared to increase remarkably as increasing the amount of dosing, indicating that the dangling bonds on graphene layers enhances the energy dissipations in friction. This trend can be explained by the additional channel of energy dissipation by dangling bond or O- and H- terminated clusters created by alpha particle irradiation.

  • PDF

미세 홀 어레이 펀칭 가공 (Punching of Micro-Hole Array)

  • 손영기;오수익;임성한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.