DOI QR코드

DOI QR Code

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.02.19
  • Accepted : 2013.07.30
  • Published : 2013.10.25

Abstract

Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

Keywords

References

  1. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.S. Pei, Appl. Phys. Lett., 93(11), 113103 (2008) [DOI: http://dx.doi.org/10.1063/1.2982585].
  2. T. Oh and C. H. Kim, IEEE Trans. Plasma Science, 38, 1598 (2010) [DOI: http://dx.doi.org/10.1109/TPS.2010.2049665]
  3. A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Nano, Letters, 10, 1542 (2010) [DOI: http://dx.doi.org/10.1021/nl9037714].
  4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P.Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6(9), 652 (2007) [DOI: http://dx.doi.org/10.1038/nmat1967].
  5. Inanc Meric, Melinda Y. Han, Andrea F. Young, Barbaros Ozyilmaz, Philip Kim & Kenneth L. Shepard, Nature Nanotechnology, 3, 654 (2008) [DOI: http://dx.doi.org/10.1038/nnano.2008.268].
  6. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science, 313(5789), 951 (2006) [DOI: http://dx.doi.org/10.1126/science.1130681].
  7. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Letters, 9, 30 (2009) [DOI: http://dx.doi.org/10.1021/nl801827v]
  8. Y. Zhang, J. P. Smal l , W. V. Pontius and P. Kim, Appl . Phys. Lett., 86(7), 073104 (2005) [DOI: http://dx.doi.org/10.1063/1.1862334]
  9. Byung-Jae Kim,1 Chongmin Lee,1 Younghun Jung,1 Kwang Hyeon Baik,2 Michael A. Mastro,3 Jennifer K. Hite,3 Charles R. Eddy, Jr.,3 and Jihyun Kim, Appl. Phys. Lett., 99, 143101 (2011) [DOI: http://dx.doi.org/10.1063/1.3644496].
  10. L. Adamska, R. Addou, M. Batzill, and I. I. Oleynik, Appl. Phys. Lett., 101, 051602 (2012) [DOI: http://dx.doi.org/10.1063/1.4739475].
  11. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Science, 26, 1191 (2006) [DOI: http://dx.doi.org/10.1126/science.1125925].
  12. 4. S. H. Song, O. S. Kwon, H. K. Jeong and Y. G. Kang, Kor. J. Mater. Res., 20(2), 104 (2010) [DOI: http://dx.doi.org/10.3740/MRSK.2010.20.2.104].
  13. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007) [DOI: http://dx.doi.org/10.1038/nmat1849].

Cited by

  1. Novel transparent conductor with enhanced conductivity: hybrid of silver nanowires and dual-doped graphene vol.419, 2017, https://doi.org/10.1016/j.apsusc.2017.04.129
  2. Highly sensitive chemiresistive H 2 S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities vol.257, 2018, https://doi.org/10.1016/j.snb.2017.10.128
  3. Influence of hydrophobicity on the chemical treatments of graphene vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.107
  4. Raman spectroscopy vol.108, pp.20, 2016, https://doi.org/10.1063/1.4950969