• Title/Summary/Keyword: Copper Binding

Search Result 107, Processing Time 0.021 seconds

Increase of Yeast Survival under Oxidative Stress by the Expression of the Laccase Gene from Coprinellus congregatus

  • Kim, Dong-Sik;Kwak, Eun-Jung;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.617-621
    • /
    • 2006
  • Coprinellus congregatus secreted a laccase isozyme when the culture was transferred to an acidic liquid medium (pH 4.1). The laccase cDNA gene (clac2) was used as a probe for cloning of the genomic laccase gene (lac2) including the promoter (Plac2). The open reading frame (ORF) of lac2 had 526 deduced amino acids and four conserved copper binding domains as other fungal laccases. Recombinant plasmid (pRSlac2p-cDNA) of lac2 cDNA with its own promoter was transformed in Saccharomyces cerevisiae. Expression of the transformed lac2 gene was induced by oxidative stress ($H_2O_2$) in yeast and the survival rate of the transformed yeast strain was greatly increased when compared with that of the control strain transformed with pRS316 yeast vector.

31P NMR and ESI-MS Study of Fenitrothion-Copper Ion Complex: Experimental and Theoretical Study

  • Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1339-1342
    • /
    • 2010
  • $^{31}P$ NMR and ESI-MS studies of $Cu^{2+}$ binding to Fenitrothion (FN) were performed by experimentally and theoretically. The calculated $^{31}P$ NMR chemical shifts for FN-$Cu^{2+}$ complexes are in good agreement with experimental chemical shifts in order, and the results present an important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of FN-$Cu^{2+}$ complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.

The Origin of the Metal-insulator Transitions in Non-stoichiometric TlCu3-xS2 and α-BaCu2-xS2

  • Jung, Dong-woon;Choi, Hyun-Guk;Kim, Han-jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.363-367
    • /
    • 2006
  • The structure-property relations of ternary copper chalcogenides, $TlCu_{3-x}S_2$ and $\alpha-BaCu_{2-x}S_2$ are examined. The density of states, band dispersions, and Fermi surfaces of these compounds are investigated to verify the reason of the metal-insulator transitions by extended Huckel tight-binding band calculations. The origin of the metalinsulator transitions of non-stoichiometric $TlCu_{3-x}S_2$ and $\alpha-BaCu_{2-x}S_2$ is thought to be the electronic instability induced by their Fermi surface nesting.

Heavy Metal Biosorption and its Significance to Metal Tolerance if Streptomycetes

  • Park, Jae-young;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.51-54
    • /
    • 2002
  • Heavy metal adsorptions of four streptomycetes were compared with each other, Among the test strains, Streptomyces viridochromogenes showed the most efficient metal binding activity, which was carried out by cell wall as well as freeze-dried mycelium. An order of adsorption potential (zinc > copper > lead > cadmium) was observed in single metal reactions, whereas this adsorption order was disturbed in mixed-metal reactions. The metal adsorption reactions were very fast, pH dependent and culture age-independen, suggestive of a physico-chemical reaction between cell wall components and heavy metal ions. The metal tolerant stains presented the weakest adsorbing activity, indicating that the metal biosorption was not the basis of the metal tolerance.

Influence of Growth Rate on Biosorption of Heavy Metals by Nocardia amarae

  • Kim, Dong Wook;Daniel K. Cha;Hyung-Joon Seo;Jong Bok Bak
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.878-881
    • /
    • 2002
  • The goal of the current research was to assess the influence of the growth rate of Nocardia amarae on its overall metal binding capacity. Batch sorption isotherms for cadmium (Cd), copper (Cu), and nickel (Ni) showed that Nocardia cells harvested from chemostat cultures at a dilution rate of $0.33d^-1$ had a significantly higher metal sorption capacity than cells grown at 0.5 and $1d^-1$. The cell surface area estimated using a dye technique indicated that pure N. amarae cells grown at a lower growth rate had a significantly more specific surface area than cells harvested from a higher growth rate operation. Accordingly, this difference in the specific surface area seemed to indicate that the higher metal sorption capacity of the slowly growing Nocardia cells was due to their higher specific surface area.

Regulation of Macrophage Ceruloplasmin Gene Expression: One Paradigm of 3'-UTR-mediated Translational Control

  • Mazumder, Barsanjit;Sampath, Prabha;Fox, Paul L.
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.167-172
    • /
    • 2005
  • Ceruloplasmin (Cp) is a copper protein with important functions in iron homeostasis and in inflammation. Cp mRNA expression is induced by interferon (IFN)-${\gamma}$ in U937 monocytic cells, but synthesis of Cp protein is halted after about 12 h by transcript-specific translational silencing. The silencing mechanism requires binding of a 4-component cytosolic inhibitor complex, IFN-gamma-activated inhibitor of translation (GAIT), to a defined structural element (GAIT element) in the Cp 3'-UTR. Translational silencing of Cp mRNA requires the essential proteins of mRNA circularization, suggesting that the translational inhibition requires end-to-end mRNA closure. These studies describe a new mechanism of translational control, and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Differences of Structural and Electronic Properties in $Ba_{1-x}K_xBiO_3$ (x=0, 0.04, and 0.4)

  • 정동운;최은국
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1045-1048
    • /
    • 1999
  • Electronic structures calculated based upon the extended Huckel tight-binding method for Ba1-xKxBiO3 with x = 0, 0.04, and 0.4 are reported. It is noticed that the commensurate ordering of Bi 3+ and Bi 5+ is responsible for the insulating and semiconducting behavior in BaBiO3 and Ba0.96K0.04BiO4. The band gaps of 3.2 eV and 1.4 eV for the former and the latter compounds, respectively, are consistent with the experimental results. Doping in Bi 6s-block band up to x = 0.4 causes the collapse of the ordering of Bi 3+ and Bi 5+, thereby resulting in the superconductivity in the Ba0.6K0.4BiO3 compound. Strikingly, the character of oxygen contributes to the conducting mechanism than that of the bismuth. This is quite different from the cuprate superconductors in which the character of copper dominates that of oxygen.

Synthesis of Diketo Copper(II) Complex and Its Binding toward Calf Thymus DNA (CTDNA) (이케토 구리(II) 착물의 합성 및 송아지 Thymus DNA(CTDNA)와의 상호작용)

  • Tak, Aijaz Ahmad;Arjmand, Farukh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.177-182
    • /
    • 2011
  • A diketo-type ligand was synthesized by the Knoevenagel condensation reaction of thiophene-2-aldehyde with acetylacetone, subsequently its transition metal complexes with Cu(II), Ni(II), and Co(II) chlorides were also prepared. All the complexes were characterized by various physico-chemical methods. The molar conductivity data reveals ionic nature for the complexes. The electronic spectrum and the EPR values suggest square planar geometry for the Cu(II) ion. Interaction of the Cu(II) complex with CTDNA (calf thymus DNA) was studied by absorption spectral method and cyclic voltammetry. The $k_{obs}$ values versus [DNA] gave a linear plot suggesting psuedo-first order reaction kinetics. The cyclic voltammogram of the Cu(II) complex reveals a quasi-reversible wave attributed to Cu(II)/Cu(I) redox couple for one electron transfer with $E_{1/2}$ values -0.240 V and -0.194 V. respectively. On addition of CTDNA, there is a shift in the $E_{1/2}$ values 168 mV and 18 mV respectively and decrease in Ep values. The shift in $E_{1/2}$ values in the presence of CTDNA suggests strong binding of Cu(II) complex to the CTDNA.

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.