• Title/Summary/Keyword: Copolymer composite

Search Result 96, Processing Time 0.028 seconds

Preparation and Properties of Polyorganosiloxane Modified Maleated EPDM/EPDM Rubber Vibration Isolator (Polyorganosiloxane 변성 말레화 EPDM/EPDM 방진고무의 제조와 그 특성)

  • Kang, Doo-Whan;Kim, So-Mi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • The surface of Alnico, one of the industrial dust waste, was treated with 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane (VMS) as a surface treating agent and used as the filler for vibration isolator rubber. Maleated EPDM prepared from bulk polymerization of EPDM with maleic anhydride was copolymerized with ${\alpha},{\omega}$-bis(3-aminopropyl)polydimethylsiloxane to obtain maleated EPDM-polydimethylsiloxane copolymer (MEPDM-PDMS). EPDM/Alnico/MEPDM-PDMS vibration isolator rubber was prepared from compounding with Alnico treated with surface treating agent, 25 and 50 phrs to EPDM, respectvely based on 1 to 10 wt% of MEPDM-PDMS to EPDM. From the measurement of the thermal properties to the rubber, the glass transition temperatures (Tg) for the rubber containing maleated EPDM-PDMS copolymer was slightly lower temperature, $33^{\circ}C$ than EPDM rubber, and also DMA results showed higher tan ${\delta}$ peak to the rubber prepared from compounding with EPDM-PDMS copolymer. From the results, rubber prepared using EPDM-PDMS copolymer had better vibration isolator property.

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

The Preparation of Composite Fiber Adsorbents for Separation of Uranium from Seawater by Spinning(1) (방사 방법을 이용한 해수로 부터 우라늄 분리를 위한 복합재료 섬유흡착제의 제조(1))

  • Hwang, Taek-Seong;Hwang, Ui-Hwan;Park, Jeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.966-978
    • /
    • 1995
  • Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemetal analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinklng agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of Its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uraniyl ion through the composite fiber adsorbent containing the amidoxime group was miximized a pH level of 8. Also, if was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uraniyl ion from seawater.

  • PDF

Propylene/Nitrogen Separation Membranes Based on Amphiphilic Copolymer Grafted from Poly(1-trimethylsilyl-1-propyne) (양친성 고분자가 그래프팅된 Poly(1-trimethylsilyl-1-propyne) 기반의 프로필렌/질소 분리막)

  • Park, Cheol Hun;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.88-95
    • /
    • 2019
  • Hydrocarbons containing carbon double bonds are generally called olefins and it is extensively used in petro-chemical industry as essential base material. Especially, olefins are essential in polymer synthesis and thus the effective separation and purification of olefins from gas mixture are very important and it gives significant positive effect on the future industrial development. In this study, we fabricated polymeric composite membrane based on poly(1-trimethylsilyl-1-propyne) (PTMSP) for propylene/nitrogen separation and enhancement of its separation performance by grafting amphiphilic copolymer. Furthermore, to accelerate facilitated transport for propylene molecules, Ag salt ($AgBF_4$) and ionic liquid ($EMIM-BF_4$) was incorporated to polymer composite membranes. The neat PTMSP membrane exhibited extremely high gas permeance and low gas selectivity due to its high free volume. To address this issue, PTMSP was grafted with poly(oxyethylene glycol methacrylate) (POEM) and poly(ethylene glycol) behenyl ether methacrylate (PEGBEM). Additionally, the additives such as $AgBF_4$ and $EMIM-BF_4$ further increased the propylene permeance, resulting in increment of propylene/nitrogen selectivity.

Preparation and Properties of Siloxane Modified EPDM/HDPE/Carbon black Composite (실록산 변성 에틸렌프로필렌 고무/고밀도 폴리에틸렌/카본블랙 복합체의 제조와 물성)

  • Lee, Byoung-Chul;Kang, Doo-Whan
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • Maleic anhydride (MA) modified ethylene-propylene-diene terpolymer (MEPDM) was pre-pared from solution polymerization. MEPDM-g-PST copolymer was prepared by melt polymerization of male ate d EPDM and quaternary ammonium silyl polydimethylsiloxane -7,7,8,8- tetracyanoquinodimethane (TCNQ) adduct (PST) in internal mixer and MEPDM-g-PST/HDPE/CB (MPEC) was prepared by com-pounding HDPE, MEPDM-g-PST copolymer and carbon black (CB, 5, 10, 15, and 20 phr), and HDPE/ CB (PEC) by compounding HDPE and CB (5, 10, 15, and 20 phr), respectively. The structure of MEPDM-g-PST copolymer was confirmed by measuring the FTIR. The maximum grafting ratio of MA onto EPDM was 2.35%. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix show that CB in MPEC was better dispersed than that in PEC composite.

PVA-based Graft Copolymer Composite Membrane Synthesized by Free-Radical Polymerization for CO2 Gas Separation (자유 라디칼 중합법을 활용한 CO2 기체분리용 PVA 기반 가지형 공중합체 복합막)

  • Park, Min Su;Kim, Jong Hak;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.268-274
    • /
    • 2021
  • One of the chronic problems in the issue of global warming is the emission of greenhouse gases. Carbon dioxide (CO2), which accounts for the highest proportion of various greenhouse gases, has been continuously researched by humans to separate it. From this point of view, a poly(vinyl alcohol) (PVA)-based copolymer with acrylic acid monomer was utilized in a gas separation membrane in this study. We employed a free radical polymerization to fabricate PVA-g-PAA (VAA) graft copolymer. It was utilized in the form of a composite membrane on a polysulfone substrate. The proper amount of acrylic acid reduced the crystallinity of PVA and increased CO2 solubility in separation membranes. In this perspective, we suggest the novel approach in CO2 separation membrane area by grafting and solution-diffusion.

Preparation of Cation Exchange Membrane using Block Copolymer of Polysulfone and Poly(Phenylene Sulfide Sulfone) and its Electrochemical Characteristics (Polysulfone과 Poly(Phenylene Sulfide Sulfone)의 블록 공중합체를 이용한 양이온 교환막의 제조 및 전기화학적 특성)

  • 임희찬;강안수
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.66-74
    • /
    • 2000
  • In consideration that a high tensile strength and ion exchange capacity are maintained as the swelling of membrane is controlled by the coagulation of PSf with the introduction of ion exchange groups and PPSS without the introduction of ion exchange groups, the block copolymer of PSf and PPSS were synthesized. The cation exchange membrane was prepared by sulfonation with CSA and casted. The synthesized block copolymer and cation exchange membrane were characterized by FT-IR and their thermal stability was confirmed by TGA. The optimum sulfonation could be accomplished at a mole ratio of BPSf to CSA 1:3. The best electrochemical properties obtained by the optimal condition were area resistance of 4.37 $\Omega$$\textrm{cm}^2$, ion exchange capacity of 1.71 meq/g dry membrane, water content of 0.2941 g $H_2O$/g dry membrane, and fixed ion concentration of 5.81 meq/g $H_2O$. When GBL was used as an additive, area resistance was increased by 13.7 % and ion exchange capacity was increased by 14.6%. When the membrane was fabricated in a form of composite using non woven cloth as a support. the tensile strength of membrane could be improved, but the electrochemical characteristics were not influenced.

  • PDF

Crosslinked Composite Polymer Electrolyte Membranes Based On Diblock Copolymer and Phosphotungstic Acid (디블록 공중합체와 인텅스텐산을 이용한 가교형 복합 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Park, Jung-Tae;Seo, Jin-Ah;Kim, Jong-Hwa;Jho, Young-Choong
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • Proton conductive hybrid nanocomposite polymer electrolyte membranes comprising polystyrene-5-poly (hydroxyethyl methacrylate) (PS-b-PHEMA), sulfosuccinic acid (SA) and phosphotungstic acid (PWA) were prepared by varying PWA concentrations. The PHEMA block was thermally crosslinked by SA via the esterification reaction between -OH of PHEMA and -COOH of SA. Upon the incorporation of PWA into the diblock copolymer, the symmetric stretching bands of the $SO_3^-$ group at $1187cm^{-1}$ shifted to a lower wavenumber at $1158cm^{-1}$, demonstrating that the PWA particles strongly interact with the sulfonic acid groups of SA. When the concentration of PWA was increased to 30wt%, the proton conductivity of the composite membrane at room temperature increased from 0.045 to 0.062 S/cm, presumably due to the intrinsic conductivity of the PWA particles and the enhanced acidity of the sulfonic acid in the membranes. The membrane containing 30wt% of PWA exhibited a proton conductivity of 0.126 S/cm at $100^{\circ}C$. Thermal stability of the composite membranes was also enhanced by introducing PWA nanoparticles.

Pervaporation Separation Properties of Chlorinated Hydrocarbons through Poly(1-trimethylsilyl-1-propyne) Modified Memebrane (Poly(1-trimethylsilyl-1-propyne) Modified Memebrane을 통한 유기염소계화합물의 투과증발 분리 특성)

  • 백귀찬;변인섭;이용희;이용택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.66-69
    • /
    • 1998
  • 1. 서론 : 본 연구는 시간이 경과함에 따라 free volume감소로 나타나는 PTMSP[Poly(1-trimethylsilyl-1-propyne)] memebrane의 pysical aging을 늦추거나 방지할 목적으로 PTMSP polymer를 합성하여 여기에 hydroxy-terminated PDMS를 graft시켜 PTMSP/PDMS graft copolymer를 제조하였다. 용매증발법에 의해 PTMSP memebrane 및 PTMSP/PDMS graft copolymer memebrane을 제막한 후 PTMSP막의 물리적 노화를 관찰하기 위한 시점에서 조업시간에 따른 이들 막의 transport property을 살펴 보았다. 또한 이들 polymer을 사용하여 0.5 wt%의 희박 dope solution을 제조한 후 여기에 상전환법에 의해 제조된 비대칭 PEI(polyetherimide)지지막을 dip-doping시켜 PTMSP-PEI, PTMSP/PDMS-PEI 복합막을 제조하여 상기의 두 막과 투과증발 특성을 상호 비교하여 보았다. 그리고 객관적 비교 자료를 얻을 목적으로 PDMS막과 PDMS-PEI 복합막을 각각 제막하여 동일조건에서 실험을 수행하였다. 따라서 본 연구는 수중에 미량 용해된 chloroform, trichloroethylene, perchlororthylene, 1,1,1-trichloroethane 등의 유기염소계화합물 제거 실험을 통해 PTMSP, PTMSP/PDMS 등의 dense membrane과 asymmetric composite membrane 사이의 상관관계 및 이들 막들의 투과특성을 서로 비교, 분석하는데 목적을 두었다.

  • PDF