DOI QR코드

DOI QR Code

Propylene/Nitrogen Separation Membranes Based on Amphiphilic Copolymer Grafted from Poly(1-trimethylsilyl-1-propyne)

양친성 고분자가 그래프팅된 Poly(1-trimethylsilyl-1-propyne) 기반의 프로필렌/질소 분리막

  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.03.28
  • Accepted : 2019.04.14
  • Published : 2019.04.30

Abstract

Hydrocarbons containing carbon double bonds are generally called olefins and it is extensively used in petro-chemical industry as essential base material. Especially, olefins are essential in polymer synthesis and thus the effective separation and purification of olefins from gas mixture are very important and it gives significant positive effect on the future industrial development. In this study, we fabricated polymeric composite membrane based on poly(1-trimethylsilyl-1-propyne) (PTMSP) for propylene/nitrogen separation and enhancement of its separation performance by grafting amphiphilic copolymer. Furthermore, to accelerate facilitated transport for propylene molecules, Ag salt ($AgBF_4$) and ionic liquid ($EMIM-BF_4$) was incorporated to polymer composite membranes. The neat PTMSP membrane exhibited extremely high gas permeance and low gas selectivity due to its high free volume. To address this issue, PTMSP was grafted with poly(oxyethylene glycol methacrylate) (POEM) and poly(ethylene glycol) behenyl ether methacrylate (PEGBEM). Additionally, the additives such as $AgBF_4$ and $EMIM-BF_4$ further increased the propylene permeance, resulting in increment of propylene/nitrogen selectivity.

올레핀은 석유화학산업에서 대부분의 물질의 근간이 되는 핵심적인 물질이며 특히 고분자 합성에 있어 매우 중요하다. 이러한 올레핀 물질을 효율적으로 분리/가공하는 공정은 산업발전에 있어 지대한 영향을 끼친다. 본 연구에서는 올레핀 물질 중 프로필렌 기체를 선택적으로 분리하는 고분자 복합막을 제조하여 투과 및 선택 성능을 증대시키고자 고투과성 매질인 poly(1-trimethylsilyl-1-propyne) (PTMSP)에 양친성 고분자를 이용하여 개질하였다. 또한 올레핀 분자와 상호작용이 있는 $AgBF_4$ 염 및 촉진수송을 극대화 시키기 위하여 이온성 액체인 $EMIM-BF_4$를 첨가하여 올레핀/질소 투과 분리 성능을 향상시켰다. 기존 PTMSP 복합막의 경우 굉장히 높은 자유부피를 가져 높은 기체 투과성능을 보이는 반면 투과시키고자 하는 기체에 대한 선택적인 분리 성능이 매우 떨어져 낮은 선택도를 보인다. 이를 극복하고자 양친성 고분자를 PTMSP 계면에 그래프트 공중합을 시켰으며 올레핀과 높은 상호작용을 보이는 $AgBF_4$ 염 및 $EMIM-BF_4$ 이온성 액체를 첨가하여 프로필렌/질소에 대한 선택도를 향상시켰다.

Keywords

References

  1. S. H. Kunjattu, V. Ashok, A. Bhaskar, K. Pandare, R. Banerjee, and U. K. Kharul, "ZIF-8@ DBzPBI-BuI composite membranes for olefin/paraffin separation", J. Membr. Sci., 549, 38 (2018). https://doi.org/10.1016/j.memsci.2017.11.069
  2. I. Pinnau and L. G. Toy, "Solid polymer electrolyte composite membranes for olefin/paraffin separation", J. Membr. Sci., 184, 39 (2001). https://doi.org/10.1016/S0376-7388(00)00603-7
  3. M. Kim and S. W. Kang, "Fabrication of poly(ethylene oxide)/Ag nanoparticles/p-benzoquinone composite membrane ssing AgN$O_3$ precursor for olefin/ paraffin separation", Membr. J., 28, 260 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.260
  4. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  5. J. E. Bachman, Z. P. Smith, T. Li, T. Xu, and J. R. Long, "Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals", Nat. Mater., 15, 845 (2016). https://doi.org/10.1038/nmat4621
  6. G. Chang, M. Huang, Y. Su, H. Xing, B. Su, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, and Z. Bao, "Immobilization of Ag (i) into a metal-organic framework with-S$O_3$H sites for highly selective olefin- paraffin separation at room temperature", Chem. Comm., 51, 2859 (2015). https://doi.org/10.1039/C4CC09679G
  7. J. P. Jung, C. H. Park, J. H. Lee, J. T. Park, and J. H. Kim, "Facilitated olefin transport through membranes consisting of partially polarized silver nanoparticles and PEMA-g-PPG graft copolymer", J. Membr. Sci., 548, 149 (2018). https://doi.org/10.1016/j.memsci.2017.11.020
  8. S. Jeong and S. W. Kang, "Poly(ethylene oxide)/ $AgBF_4/Al(NO_3)_3/Ag_2O$ composite membrane for olefin/ paraffin separation", Membr. J., 27, 313 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.313
  9. S. W. Kang, "Review on facilitated olefin transport membranes utilizing polymer electrolytes and polymer nanocomposites", Membr. J., 26, 173 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.173
  10. S. Luo, Q. Liu, B. Zhang, J. R. Wiegand, B. D. Freeman, and R. Guo, "Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation", J. Membr. Sci., 480, 20 (2015). https://doi.org/10.1016/j.memsci.2015.01.043
  11. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. L. i Xamena, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48 (2015). https://doi.org/10.1038/nmat4113
  12. A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. L. Guillouzer, G. Clet, and C. Tellez, "Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance", Adv. Funct. Mater., 26, 3154 (2016). https://doi.org/10.1002/adfm.201505352
  13. D. Zhao, Y. Wu, J. Ren, H. Li, Y. Qiu, and M. Deng, "Improved $CO_2$ separation performance of composite membrane with the aids of low-temperature plasma treatment", J. Membr. Sci., 570, 184 (2019). https://doi.org/10.1016/j.memsci.2018.10.051
  14. X. Zou and G. Zhu, "Microporous organic materials for membrane-based gas separation", Adv. Mater., 30, 1700750 (2018). https://doi.org/10.1002/adma.201700750
  15. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  16. N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim, "Effect of PVP on $CO_2/N_2$ separation porformance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113
  17. C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of $CO_2$ permeance by incorporating $CaCO_3$ in mixed matrix membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55
  18. M. Fang, Z. He, T. C. Merkel, and Y. Okamoto, "High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement", J. Mater. Chem. A, 6, 652 (2018). https://doi.org/10.1039/C7TA09047A
  19. N. Kosinov, J. Gascon, F. Kapteijn, and E. J. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016). https://doi.org/10.1016/j.memsci.2015.10.049
  20. S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi, and E. Albenze, "Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles", J. Mater. Chem. A, 3, 5014 (2015). https://doi.org/10.1039/C4TA05225K
  21. Y. Chen, L. Zhao, B. Wang, P. Dutta, and W. W. Ho, "Amine-containing polymer/zeolite Y composite membranes for $CO_2/N_2$ separation", J. Membr. Sci., 497, 21 (2016). https://doi.org/10.1016/j.memsci.2015.09.036
  22. C. Chi, X. Wang, Y. Peng, Y. Qian, Z. Hu, J. Dong, and D. Zhao, "Facile preparation of graphene oxide membranes for gas separation", Chem. Mater., 28, 2921 (2016). https://doi.org/10.1021/acs.chemmater.5b04475
  23. J. Fu, S. Das, G. Xing, T. Ben, V. Valtchev, and S. Qiu, "Fabrication of COF-MOF composite membranes and their highly selective separation of $H_2/CO_2$", J. Am. Chem. Soc., 138, 7673 (2016). https://doi.org/10.1021/jacs.6b03348
  24. J. Shen, G. Liu, K. Huang, W. Jin, K. R. Lee, and N. Xu, "Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient $CO_2$ capture", Angew. Chem., 127, 588 (2015). https://doi.org/10.1002/ange.201409563
  25. Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A. K. Cheetham, E. Sivaniah, and A. I. Cooper, "Porous organic cage thin films and molecular-sieving membranes", Adv. Mater., 28, 2629 (2016). https://doi.org/10.1002/adma.201505688
  26. J. H. Lee and J. Kim, "Research trends of metal-organic framework membranes: Fabrication methods and gas separation applications", Membr. J., 25, 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  27. C. H. Park, J. Y. Lim, J. H. Lee, J. M. Lee, J. T. Park, and J. H. Kim, "Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells", Solid State Ion., 290, 24 (2016). https://doi.org/10.1016/j.ssi.2016.03.021
  28. C. H. Park, J. H. Lee, J. P. Jung, B. Jung, J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for $CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015). https://doi.org/10.1016/j.memsci.2015.06.023
  29. C. H. Park, J. H. Lee, E. Jang, K. B. Lee, and J. H. Kim, "$MgCO_3$-crystal-containing mixed matrix membranes with enhanced $CO_2$ permselectivity", Chem. Eng. J., 307, 503 (2017). https://doi.org/10.1016/j.cej.2016.08.098
  30. C. H. Park, J. H. Lee, J. P. Jung, and J. H. Kim, "Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation", J. Membr. Sci., 533, 48 (2017). https://doi.org/10.1016/j.memsci.2017.03.023
  31. W. Li, Y. Zhang, C. Zhang, Q. Meng, Z. Xu, P. Su, Q. Li, C. Shen, Z. Fan, and L. Qin, "Transformation of metal-organic frameworks for molecular sieving membranes", Nat Comm., 7, 11315 (2016). https://doi.org/10.1038/ncomms11315
  32. P. F. Zito, A. Caravella, A. Brunetti, E. Drioli, and G. Barbieri, "Knudsen and surface diffusion competing for gas permeation inside silicalite membranes", J. Membr. Sci., 523, 456 (2017). https://doi.org/10.1016/j.memsci.2016.10.016
  33. P. F. Zito, A. Caravella, A. Brunetti, E. Drioli, and G. Barbieri, "Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes", J. Membr. Sci., 564, 166 (2018). https://doi.org/10.1016/j.memsci.2018.07.023