• Title/Summary/Keyword: Coplanar transmission line

Search Result 71, Processing Time 0.028 seconds

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

A Size-Reduced CPW Balun with the Wilkinson Divider Structure Using a Crossing Structure (신호-접지 교차구조를 이용한 소형화된 CPW 월킨슨 분배기 구조의 발룬)

  • Lim Jong-Sik;Yang Hoe-Sung;Kim Dong-Joo;Jeong Yong-Chae;Ahn Dal;Kim Kwang-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.835-841
    • /
    • 2005
  • In this paper, a novel sized-reduced CPW(Coplanar Waveguide) balun is proposed. It has a crossing structure between signal line and ground planes of CPW transmission line for the $180^{\circ}$ phase inversion. The$3{\lambda}/4$ CPW transmission line is reduced to ${\lambda}/4$ in physical length while the electrical length is preserved to $270^{\circ}$ by the $180^{\circ}$ phase inverting structure, while the previous balun by Lim et at. has a long $3{\lambda}/4$ transmission section to from the Wilkinson divider structure having out of phase between output ports. In addition, the measured data which show the crossing structure has the wanted $180^{\circ}$ phase change is presented in this work.

A New CPW Dual Band Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line (Composite Righg/Left-Hand 전송선로를 이용한 새로운 이중대역의 CPW 윌킨슨 전력 분배기)

  • Zhang, Zufu;Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, a new kind of wideband, low-loss composite right/left-handed (CRLH) transmission line (TL) and a Wilkinson power divider are presented. The TL is composed of a parallel meander inductor and a series cutting capacitor based on coplanar waveguide (CPW) structure. The power divider is designed by substituting the CRLH-TL into the conventional transmission line. The experiment results show that the TL has a good agreement with the desired results, exhibiting the return losses under 12 dB from 8.4 GHz to 34.4 GHz. The operating frequencies of the power divider are 12.05 GHz to 13.15 GHz and 16.50 GHz to 19.30 GHz, respectively. The 20 dB bandwidths are 8.9 % and 17.9 %, respectively. Typical experimental measurements are conducted and compared with the simulated results.

A Novel Clock Distribution Scheme for High Performance System and A Structural Analysis of Coplanar and Microstrip Transmission Line (고성능 시스템을 위한 클록 분배 방식 및 Coplanar 및 Microstrip 전송라인의 구조적 분석)

  • Park, Jung-Keun;Moon, Gyu;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • A novol clock distribution scheme is proposed for high-speed and low-power digital system to minimize clock skew and reduce dynamic power consumption. This scheme has ideal zero-skew characteristic by using folded clock lines (FCL) and phase blending circuit. For analyzing suitable line structures to FCLs, microstrip line and coplanar line are placed with folded clock lines. Simulation results show that the maximum clock-skew between two receivers located 10mm apart is less than lops at 1㎓ and the maximum clock-skew between two receivers located 20mm apart is less than 60ps at 1㎓. Also the results show that the minimum skews of clock signals regardless of process, voltage, and temperature variation are invariant.

Ka-band Power Amplifiers for Short-range Wireless Communication in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS공정을 이용한 Ka 대역 근거리 무선통신용 전력증폭기 설계)

  • He, Sang-Moo;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.131-136
    • /
    • 2008
  • Two Ka-band 3-stage power amplifiers were designed and fabricated using $0.18-{\mu}m$ CMOS technology. For low loss matching networks for the amplifiers, two substrate-shielded transmission line structures, having good modeling accuracy up to 40 GHz were used. The measured insertion loss of substrate-shielded microstrip-line (MSL) was 0.5 dB/mm at 27 GHz. A 3-stage CMOS amplifier using substrate-shielded MSL achieved a 14.7-dB small-signal gain and a 14.5-dBm output power at 27 GHz in a compact chip area of 0.83$mm^2$. The measured insertion loss of substrate-shielded coplanar waveguide (CPW) was 1.0 dB/mm at 27 GHz. A 3-stage amplifier using substrate-shielded CPW achieved a 12-dB small-signal gai and a 12.5-dBm output power at 26.5 GHz. This results shows a potential of CMOS technology for low cost short-range wireless communication components and system.

Gysel 3:1 variable power divider using the dual characteristic impedance transmission line (이중 특성 임피던스 선로를 이용한 Gysel 3:1 가변 전력분배기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1409-1415
    • /
    • 2021
  • The Gysel divider has the advantage of easily setting the resistor in the circuit. If the line impedance in the Gysel divider is set differently, the input signal can be distributed to the two output ports at various distribution ratios. This paper proposes the Gysel divider that can change the power distribution to 1:3 or 3:1 by changing the line impedance. The impedance change of the line can be implemented by placing a floating copper plate on the bottom of the microstrip-line. When the floating copper plate and the ground plane are connected, the line operates as the microstrip-line, and when the floating copper plate and the ground plane are disconnected, the line operates as the coplanar-line. The proposed Gysel divider was fabricated at the center frequency of 1.5GHz. The fabricated 3:1 Gysel divider has a stable value S11 of below -17dB, S21/S31 of 4.8±0.2dB, S21(to high output port) of -1.39±0.12dB and S31(to low output port) of -6.15±0.08dB over 1.3~1.7GHz.

Studies on the fabrication of transmission line with high and low $Z_0$ using BCB layer (BCB를 이용한 High & Low$Z_0$전송선로 제작에 대한 연구)

  • 한효종;이성대;전영훈;윤관기;김삼동;황인석;이진구;류기현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.57-60
    • /
    • 2002
  • In this paper, transmission lines with low and high characteristic impedance (Z$_{0}$) are fabricated and analyzed. The transmission lines are fabricated on the benzo-cyclo-butene (BCB) films of a low dielectric constant. For the low Z$_{0}$, two types of coplanar waveguide (CPW) structures are fabricated, which include bottom-ground and double-ground type. Measurement shows that Z$_{0}$ values for each CPW type are 7.3 and 9.4$\Omega$, respectively, at a signal line width of 100 #m. Whit the ratio between the spacing of bottom-ground and the signal line with becomes greater than 2.5, the Z$_{0}$ is nearly saturated. In addition, thin film microstrip lines fabricated using the BCB insertion layers show very low Z$_{0}$ of 25.5$\Omega$, and this impedance is ~64 % of the values obtained from the BCB-based CPW structures of the same line width. Measurement result of CPW on BCB layer is 100.5 Ω.s 100.5 Ω.

  • PDF

Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement

  • Cho, Young-Seek;Franklin, Rhonda R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.237-240
    • /
    • 2012
  • A conducting polymer, poly 3-hexylthiophene (P3HT) is characterized with the metal-insulator-semiconductor (MIS) measurement method and the high frequency planar circuit method. From the MIS measurement method, the relative dielectric constant of the P3HT film is estimated to be 4.4. For the high frequency planar circuit method, a coplanar waveguide is fabricated on the P3HT film. When applying +20 V to the CPW on P3HT film, the P3HT film is in accumulation mode and becomes lossy. The CPW on P3HT film is 1.5 dB lossier than the CPW on $SiO_2$ film without P3HT film at 50 GHz.

High-frequency characteristics of short-wavelength transmission line on polyether sulfone thin film for a realization of transparent flexible wireless communication device (투명 플렉시블 무선통신 소자구현을 위한 PES 박막상의 단파장 선로에 대한 고주파 특성연구)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.353-361
    • /
    • 2016
  • This work presents an investigation of the radio frequency characteristics of an FTLPGS (fishbone-type transmission line employing periodic ground structure) fabricated on PES (polyether sulfone) for the realization of a transparent flexible wireless communication device. According to the results, the FTLPGS on PES showed a shorter wavelength characteristic when compared with a conventional coplanar waveguide. Concretely, the wavelength of the FTLPGS was 1.91 mm at 50 GHz, which was 48.5% of the conventional coplanar waveguide. The bandwidth extraction result showed that the passband of the FTLPGS on PES was 250 GHz. Unlike conventional periodic structures, the characteristic impedance of the FTLPGS on PES also showed a very low frequency dependency. A miniaturization of the RF circuit on the PES substrate was made possible by the FTLPGS on PES having shown characteristic impedance lower than that of conventional transmission lines. These results mean that, with a broadband operation frequency, the FTLPGS on PES is a suitable construction application for the transmission line and distributed passive components.

A New Accurate Interconnect Delay Model and Its Experiment Verification (연결선에 기인한 시간지연의 정확한 모델 및 실험적 검증)

  • Yoon, Seong-Tae;Eo, Yung-Seon;Shim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.78-85
    • /
    • 2000
  • A new analytical VLSI interconnect delay model is presented and its accuracy is experimentally verified. In the model, the transmission line parameter variations due to skin effect, proximity effect, and silicon substrate effect are taken into account. That is, the circuit model of the interconnect line that includes these effects is newly developed and analyzed. For the model verification, test patterns combined the coplanar structure with microstrip were designed by using 0.35${\mu}m$ CMOS process technology. It is shown that the accuracy of the model is less than about 10% error.

  • PDF