• Title/Summary/Keyword: Coordinate Control

Search Result 748, Processing Time 0.021 seconds

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

Vibrational Control of an Underactuated Mechanical System: Control Design through Averaging Analysis (비구동관절을 가진 기계시스템의 가진제어: 평균화해석을 통한 제어기의 설계)

  • Hong, Keum-Shik;Yang, Kyung-Jinn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.385-393
    • /
    • 1999
  • An open loop vibrational control for an underactuated mechanical system with amplitude and frequently modulation is investigated. Since there is no direct external input to an unactuated joint, the dynamic coupling between the actuated and unactuated joints is utilized for controlling the unactuated joint. Feedback linearization has been performed to incorporate fully the known nonlinearities of the underactuated system considered. The actuated joints are firstly positioned to their desired locations, and the periodic oscillatory inputs are applied to the actuated joints to move the remaining unactuated joints to their target positions. The amplitudes and frequencies of the vibrations introduced are determined through averaging analysis. A systematic way of obtaining an averaged system for the underactuated system via a coordinate transformation is developed. A control design example of 2R planer manipulator with a free joint with no brake is provided.

  • PDF

Motion control of nonholonomic system with rolling constraint

  • Sampei, Mitsuji;Mizuno, Shintaro;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.534-537
    • /
    • 1995
  • In this paper, we propose a control strategy for a class of nonholonomic systems. A system with nonholonomic constraint is called a nonholonomic system, and as Brockett showed, the equilibrium of such systems can not be stabilized with any continuous static state feedbacks even though the system is controllable in the sense of nonlinear. A control strategy we propose is transforming this system into time-state control form by coordinate transformation and input transformation. We will apply this control strategy to the motion control of a rigid ball that is held between two parallel plates.

  • PDF

Dynamic Modeling and Robust Hovering Control of a Quadrotor VTOL Aircraft (4개의 회전날개를 갖는 수직이착륙 비행체의 모델링과 강인 정지비행 제어)

  • Kim, Jin-Hyun;Kang, Min-Sung;Park, Sang-Deok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1260-1265
    • /
    • 2008
  • This study deals with modeling and flight control of quadrotor type (QRT) unmanned aerial vehicles (UAVs). Rigorous dynamic model of a QRT UAV is obtained both in reference and body frame coordinate systems. A disturbance observer (DOB) based controller using the derived dynamic models is also proposed for robust hovering control. The control input induced by DOB is helpful to use simple equations of motion satisfying accurate derived dynamics. The experimental results show the performance of the proposed control algorithm.

Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters (미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어)

  • Lee, Keun Uk;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

A Compliant Contact Control Strategy for Robot Manipulators with Unknown Environment

  • Kim, Byoung-Ho;Chong, Nak-Young;Oh, Sang-Rok;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.20-25
    • /
    • 1998
  • This paper proposes a new compliant contact control strategy for the robot manipulators accidentally interacting with an unknown environment. The main features of the proposed method are summarized as follows: First, each entry in the diagonal stiffness matrix corresponding to the task coordinate in Cartesian space is adaptively adjusted during con-tact along the corresponding axis based on the contact force with its environment. Second, it can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end effector. Third, the adjusted stiffness gains are automatically recovered to initially specified stiffness gains when the task is changed from constrained motion to unconstrained motion. The simulation results show the effectiveness of the proposed method by employing a two-link direct drive manipulator interacting with an unknown environment.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2-DOF PID controller. The experimental results jar an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard.

Stabilization and trajectory control of the flexible manipulator with time-varying arm length

  • Park, Chang-Yong;Ono, Toshiro;Sung, Yulwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.20-23
    • /
    • 1996
  • This paper deals with the flexible manipulator with rotational and translational degrees of freedom, which has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator is considered. First we design the controller of the 2-type robust servo system based on the finite horizon optimal control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the method of the dynamic programming and of modifying the reference trajectory in time coordinate. The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.

  • PDF

Characteristic Experiment for Direct Vector Control of Linear Induction Motor (선형유도전동기(LIM)의 직접벡터제어 특성 실험)

  • Kwon, Byung-Il;Lee, Sang-Woo;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.25-27
    • /
    • 1996
  • Instantaneous thrust control of linear induction motor(LIM) is needed to control its speed and position more accurately. In the vector control of LIM, it is hard to calculate flux angle exactly because of end effects of LIM. So in this paper direct vector control method is utilized to control speed of LIM. The airgap magnetic flux angle measured by hall sensors is transferred directly into coordinate transformer. As a result, some experimental values of direct vector control using DSP are shown.

  • PDF

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.