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Abstracts This paper deals with the flexible manipulator with rotaional and translational degrees of freedom, which
has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator
is considered. First we design the controller of the 2-type robust servo system based on the finite horizen optimal
control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the
method of the dynamic programming and of modifying the reference trajectory in time coordinate.

The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of
the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero
completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.
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INTRODUCTION

The flexible manipulator with light weight, which has
an arm of time-varying length, has the advantages of
fast operation and the attainment of large workspace.
But this specific type manipulator give rise to the con-
cern about the elastic vibration suppression of the flex-
ible manipulator which is critical to the tracking accu-
racy of robots. And also its nonlinear dynamics make
it difficult to design the controller.

As the previous works, the modeling and the dynamic
behavior of the flexible manipulator with a prismatic
and rotational joints were derived and control prob-
lems were discussed [1] - [4]. Park et al. [1] achived the
feedforward control by using the motion control based
on the optimal control theory. The feedforward con-
trol strategy is important in reducing the tracking er-
ror of the end-effector of the flexible manipulator along
the given trajectory. Yamada et al. [2] formulated the
positioning control problem as the optimal regulator
problem with conditions of making the load cease to
oscillate at the desired position and of minimizing the
input energy. Jiang et al. [3] discussed the existence of
the solution of the trajectory tracking problem. Park
et al. [4] discussed the modeling and tracking control
problem of the flexible manipulator with the prismatic
joint along the arc line trajectory. But, these works do
not take the nonlinear terms into consideration.

In this work, we derived the dynamic model of the
flexible manipulator with time-varying arm length. Al-
though the dynamic model has highly nonlinear terms,
there were little influences of the nonlinear terms on the
behavior of the system when the operation range was
small. Therefore, to achieve the asymptotic stability of
the system, we used a linear time-varying feedback con-
trol law. The point-to-point(PTP) control could also
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be exactly achieved by using the 2-type robust servo
controller in spite of nonlinear terms. For tracking
along to the discontinuous-velocity trajectory, we de-
signed the controller of the 2-type robust servo system
based on the finite horizen optimal control theory. By
using this controller and modifying the reference tra-
jectory in time coordinate, we could reduce sufficiently
the tracking errors to an adequate level.

2. DYNAMIC MODEL OF THE

MANIPULATOR

2.1 Differential Equation of the Manipulator

We discuss the flexible manipulator shown in Fig. 1
which consists of two links, one revolute joint and one
prismatic joint. Link 1 is a rigid manipulator which has
total length L, + L3, mass per unit length p; and area
A;. Link 2 is a flexible manipulator with variable arm
length whose total length is Lo, mass per unit length
P2, area A;, moment of inertia I3 and Young modulus
E5. The origins of link 1 and link 2 are O; and O,
respectively. Link 2 does translation motion about link
1, with a prismatic joint. The elastic part of link 2 is
defined by the distance between the tips of link 1 and
link 2. An ideal prismatic joint without any undesirable
gap in all directions is assumed.

With respect to the inertial coordinate(0O; XY'), the
angular displacement of link 1 is represented by 6(t)
(the counter-clock direction is set to be positive). The
input commands, which are the torques to be applied
at each actuator, are represented by u(t) (the counter-
clock direction is set to be positive). The line between
the origin of link 1 and the tip of the end effector is
called by a virtual rigid manipulator. R,;.(t) denotes



its radial length and 6,:.(t) denotes its angular displace-
ment with respect to the inertial coordinate. §(Z,t)
denotes the deflection of the flexible manipulator at
which is a distance from the origin of the link 2, O,. We
assume that the elastic displacement of link 2, §(Z, ),
is very small compared to the rigid displacement.

Fig. 1. Schematic diagram of the flexible manipulator
with time-varying arm length.
We set some assumptions for modeling the flexible
manipulator.

[A.1] Elastic deflection on the second link can be mod-
eled as Euler-Bernoulli Beam.

[A.2] Radial displacement R(t) is determined before-
hand as follows.

R(t) = (2 — 2t + 4)2
[A.3] Elastic deflection §{Z,t) = 0at & = L+ La— R(t).

Using the following relationship, we can nondimen-
sionalize the elastic part of the flexible manipulator.

z = (R(t) - Li)x + (L1 + Ly — R(t)) (1
9(z,t) = (R(t) — L1)y(z,1) (2)

From Euler-Lagrange equation and by nondimension-
alizing, we obtain the nonlinear differential equations
and its boundary conditions of the flexible manipulator
as follows.

1 N
5[01141(13 + L3) + p2A2(L3 — (R — L2)*))0

1
+p2A2H/ [(Ly + Hz)(Hy + Ry)R + HRE
0

+(L1+ Hz)(Hij+ Ry — 6) — HR — zR9
+H?6y? + 2yR? + HyR + 2(L, + Hz)Ry

+2H%yy0 + (Hy + Ry)Rz + 3HROY? = v (3)

EI 84y 2 Ha .

5 5t + p2A2[(1 — H®)(Ry + HY)

+H36% — (Hz + L,)6 — HyR?

+(2H?*z + LiH + HY)RO — H*)R] =0 (4)
dy(0,t 0%y(1,t ABy(1,t

y(0.8) = ) yy  oyAY )

dzx dx? ox3

where, H = R(t) ~ L.

To approximate the partial differential equations by
ordinary differential equations, the method of modal
analysis is used.
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2.2 Method of Modal Analysis

We can use the method of modal analysis to solve the
nonlinear partial differential equations, Egs.(3) and (4).
We assume the elastic deflection y(z,t) as the linear
combination of the product of proper modal function
¢i(z) and time function ¢;(t)

y(z,t) = Y ¢i@aq(t) , (i=1,2,--). (6)

=1

But, this method is focused on the constant length
links. Therefore we cannot separate variables for the
link with time-varying arm length. So we derive the
numerical model by using the following tricky way of
thinking to make it possible to use the method of modal
analysis

i) We get the equation of elastic deflection with con-
stant length at a certain time ¢ under the assumption
that the elastic arm will oscillate in the same manner
even after that time instant.

il)  After a tiny time 6t has elapsed, we derive the
equation of elastic deflection with constant length at
that time instant under the similar pressumption that
it will continue the same oscillation after that time.
iii) Repeat the same process, and bring a tiny time
6t to tend to zero.

By using the method of modal analysis, the dynamics
of the flexible manipulator with a prismatic joint are
given by

i(t) = A(t)z(t) + B(t)u(t) + 5 f(z(t)) (7)
z(t) = [0(t) 6(t) q(t) ¢t)]” (8)
§f(z(t) =10 A1 0 AT, (9)

where, t € R is a time, z(f) € R™ are states, u(t) €
R is a input, and A(t), B(t) are the matrices as the
functions of R(t) and/or R(t#) which denotes 2nd time
derivative of R(t). 6f(z(t))e R™ are nonlinear terms
and its entries are

A, = —0.006546p, A2 H30%q, (10)
A, = 0.000415p, Ao H? ¢y
«[3R6q, + 2Hé4¢, + Hbqy) . (11)

STABILITY OF THE FLEXIBLE
MANIPULATOR

3.

We simulate the stability and the trajectory controls
of the system obtained in the previous chapter. The
parameters used in the simulations are : lengths of links
L; = 1000 mm, Ly = 1500 mm, Lz = 500 mm, mass
per unit length pA = 0.504 kg/m, flexural rigidity of
link 2, E1 = 47.38 Nm? and final time ¢; = 2 sec.

In case 6§ f(z(t)) = 0 in Eq.(7), we obtain a feedback
gain, K =[1 1 8 3] which stabilizes the time-varying
nominal system, and put it in Eq.(7). Then Eq.(12) is
obtained as follows.

£(t) = (A(t) — Bt)K)z(t) + 6f(2(1)) (12)



Consider V(z(t)) = zT(t)Pz(t) as a Lyapunov func-
tion candidate, where P is a positive definite matrix as
follows.

1.6592 0.4092 3.0205 0.0188
p= 0.4092 0.3988 3.4794 0.0245
] 3.0205 3.4794 153.8709 1.6616
0.0188 0.0245 1.6616 0.0261

By taking the derivative of V (z(t)) with respect to time
along the trajectory of Eq.(12), we obtain Eq.(13).

V(z(t) = -z ()Q()z(t) + 227 (1) P8 £ (2(1)) (13)

From Eq.(13), we can see that the condition of V(z) < 0
is satisfied at || zp ||< 4.7 for Q = diag{1.5 1 1 1.3}.
Therefore, the asymptotic stability of the system can
be preserved at the neighborhood of the equilibrium
point, || z(¢) ||< 4.7, in spite of the nonlinear terms.
Thus, at the next chapter, we consider the tracking
problem of the flexible manipulator in case that the
operating region of manipulation satisfies the condition,
ie, || z(t) |I<4.7.

4. TRAJECTORY CONTROL OF THE
FLEXIBLE MANIPULATOR

We consider to make the end-effector track uniformly
along a straight line trajectory, by means of operating
the two motors individually. The straight line trajec-
tory is the trajectory of two seconds which has the dis-
continuous velocities at the initial point and the final
point. The problem which makes the end-effector track
along the given trajectory is the same as the problem
which make R(t) and 6(t) track along the desired radial
displacement function R4(t) and the angular displace-
ment function 64(t), respectively. Since it is assumed
that the radial displacement function is given before-
hand and the trajectory error in radial direction is very
small compared to that in rotational direction, we dis-
cuss only the tracking control problem along the ref-
erence trajectory (i.e., the desired angular trajectory,
Ba(t)).

There are some methods to obtain the control law for
the trajectory tracking. Among those, we can deter-
mine the control input with feedback gain, K by means
of the pole-assignment regulator. And also we can di-
rectly plan the dynamic characteristics of the system by
using the pole-assignment regulator. But, it is possible
that the input may increase immensely or that the sys-
tem may be sensitive to variations of the parameters.
Fig. 2 is the result of the simulation for the control in-
put obtained, here the dashed line denotes the desired
angular trajectory 64(t) and the solid line denotes the
angular displacement of the virtual rigid manipulator
Buir(t). Fig. 2 shows that the tracking error is great.
From the results of Chapter 3, because there is little in-
fluence of the nonlinearity on the behavior of the system
when the initial values are small, the asymptotic sta-
bility can be preserved though the linear time-varying
feedback control law is used. Thus we designed the
controller of the L-type robust servo system. Because
the desired rotational angle (i.e., 84(¢)) is similar to the
ramp function, we designed the controller of the 2-type
robust servo system as follows.

21 =7 —Yd (14)
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(15)
(16)

The response of the PTP control by the 2-type robust
servo controller is shown in Fig. 3, and the dashed
line denotes the desired angular trajectory, 84(t), and
the solid line denotes the angular displacement of the
virtual rigid manipulator 6,:(tf). From Fig. 3, the
end-effector of moves exactly from the starting point
to the destination point. As to the trajectory control,
to reduce the tracking error, we formulate the control
law as the finite horizen optimal control problem.

22 =z
u= For+ Fiz1 + Fyz2,

Dashed line : the desired angular trajectory

11 Sofid line : the angular trajectory of
the virtual rigid manipulator
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Fig. 2. Response due to the control law by the pole
assignment regulator.
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Fig. 3. PTP control of the end-effector by the 2-type
robust servo controller.

We design the optimal state feedback gain F(t) for
the system, by defining the performance index J with
R>0,Q>0and Qf >0as

¢
J = z:T(tf)Qfm(tf)+/ !(xTQz-l—uTRu)dr,(l?)
0

where, matrices (J¢, @ and R have continuous entries,
be symmetric, and be nonnegative and positive definite,
Qs = diag(0.01 0.01 0.01 001 1 1) ,R=[1],and Q =
diag(1 1 10 1 60000 60000) respectively.

Then the feedback gain F(¢) that minimizes the index
J is given by

F(t)= -R71BTP(1), (18)
where, P(t) is the positive definite solution of the Ric-
cati equation,

—P=Q+ATP+PA-PBR'BTP,

P(ty) = Qy. (19)



Thus, the control input obtained by the dynamic progam-
ming is as follows.

u(t) = F(t)z(t) (20)

The response of the simulation for the above control
input is shown in Fig. 4. Here, the dashed line denotes
the desired angular trajectory, 84(t), and the solid line
denotes the angular displacement of the virtual rigid
manipulator 6,;.(t). As expected, the tracking error
is reduced to some accuracy level. Nevertheless, this
system cannot establish a perfect tracking because it is
a non-minimum phase system.

. Dashed line : the desired angular trajectory

Solid line : the angular trajectory of
the virtual rigid manipulator
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Fig. 4. Response due to the control law by the
dynamic programming.

Thus, to reduce sufficiently the tracking errors, we scheme
to modify the reference trajectory(i.e., the desired an-
gular trajectory 84(t)). The reference trajectory is of
two seconds which has the discontinuous velocities at
the initial point and the final point. To remove the
discontinuous velocities, we can make the modified ref-
erence trajectory by adding residual times to the refer-
ence trajectory at the initial point and the final point.
By using residual times, the modified reference trajec-
tory has the continuous velocities at the initial point
and the final point. After all, we made the modified
reference trajectory by using the ramp function during
the first two seconds, from 0.0 sec to 2.0 sec, and the
reference trajectory 84(t) during the next two seconds,
from 2.0 sec to 4.0 sec. Then, we can obtain the optimal
control law for the modified reference trajectory. The
response of the new input obtained is shown in Fig. 5.
Here, the dashed line denotes the desired angular tra-
jectory 84(t), (i.e., the modified reference trajectory)
and the solid line denotes the angular displacement of
the virtual rigid manipulator 8, (t).
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Fig. 5. Response due to the control law by the
dynamic programming and the modified
reference trajectory.
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From Fig. 5, we can see that the tracking errors of the
reference trajectory are considerly improved. TABLE 1
compares the results of this method with reference {1].

TABLE 1. Comparison of tracking errors of this
method with the previous work.

Angular displacement || Reference | Control law
[rad] Tl] presented
Maximum error [rad] 0.0316 0.0125
Mean error [rad] 0.0148 0.0130

Here, we designed the controller of the 2-type robust
servo system because the reference trajectory is similar
to the ramp fuction. If the reference trajectory is the
curve of a higher order of time, this controller obtained
in the above cannot perform adequately. If the higher
order-type robust servo controller is designed according
to the order of the reference trajectory, the tracking er-
ror for any curved reference trajectory will be improved.

5. CONCLUSIONS

In this work, we derived the motion equations of
the flexible manipulator which has the time-varying
arm length, taking nonlinear terms into consideration.
There were little influences of the nonlinear terms on
the behavior of the system when the initial value is
small. Therefore, the asymptotic stability of the sys-
tem could be preserved though the linear time-varying
feedback control law was used. By using the 2-type
robust servo controller, the PTP control could also be
exactly achieved in spite of nonlinear terms. When the
discontinuous-velocity trajectory was given, by means
of the controller of the 2-type robust servo system and
the modified reference trajectory in time coordinate, we
could reduce the tracking errors to an adequate level.
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